th the kelvin hel helmholtz in instability in sph
play

Th The Kelvin-Hel Helmholtz In Instability in SPH Terrence - PowerPoint PPT Presentation

Th The Kelvin-Hel Helmholtz In Instability in SPH Terrence Tricco CITA ttricco@cita.utoronto.ca http://cita.utoronto.ca/~ttricco Accuracy and Correctness of SPH and SPMHD divB errors (Tricco & Price 2012) Spectra of magnetic energy in


  1. Th The Kelvin-Hel Helmholtz In Instability in SPH Terrence Tricco CITA ttricco@cita.utoronto.ca http://cita.utoronto.ca/~ttricco

  2. Accuracy and Correctness of SPH and SPMHD divB errors (Tricco & Price 2012) Spectra of magnetic energy in turbulence Propagation of magnetic waves (Tricco & Price 2013) (Tricco, Price & Federrath 2016) 0.1 10 0 0.08 10 -1 0.06 0.04 10 -2 0.02 P(B) B ε 0 10 -3 -0.02 Flash 128 3 10 -4 Flash 256 3 -0.04 Flash 512 3 -0.06 Phantom 128 3 10 -5 Phantom 256 3 -0.08 Phantom 512 3 -0.1 10 -6 0 0.5 1 1.5 2 0 0.5 1 1.5 2 1 10 100 x ξ x ξ k

  3. The KH Instability in SPH Agertz et al (2007)

  4. The KH Instability in SPH Agertz et al (2007) Hopkins (2015) Hayward et al (2014)

  5. All the Mixing (Moving mesh / meshless finite volume) Springel (2010) Hopkins (2015)

  6. Mo’ mixing, Mo’ problems • Robertson et al (2010), McNally et al (2012), Lecoanet et al (2016) introduce KH tests with well-posed initial conditions that demonstrate convergence Lecoanet et al (2016)

  7. Mo’ mixing, Mo’ problems • Robertson et al (2010), McNally et al (2012), Lecoanet et al (2016) introduce KH tests with well-posed initial conditions that demonstrate convergence McNally et al (2012)

  8. The KH Tests of Lecoanet et al (2016) • Two-dimensional tests with well-posed initial conditions • Introduce a scalar “colour” field to measure degree of mixing • Include physical dissipation, that is Navier-Stokes viscosity and thermal conductivity (also colour diffusion!) – dissipation is numerically independent! • Lecoanet et al (2016) show converged solutions between grid (Athena) and spectral methods (Dedalus) in the non-linear regime

  9. x velocity Initial Conditions 1 0.5 v x 0 -0.5 -1 0 0.5 1 1.5 2 y y velocity 0.005 0.004 0.003 0.002 0.001 v y 0 -0.001 -0.002 -0.003 -0.004 -0.005 0 0.5 1 1.5 2 y colour 1 0.8 colour 0.6 u flow = 1 z 1 = 0.5 a = 0.05 0.4 P 0 = 10 z 2 = 1.5 σ = 0.2 0.2 A = 0.01 0 0 0.5 1 1.5 2 y

  10. x velocity Initial Conditions 1 0.5 v x 0 -0.5 I am using Δ 𝜍 / 𝜍 = 0 (uniform density) -1 0 0.5 1 1.5 2 y y velocity 0.005 0.004 0.003 0.002 0.001 v y 0 -0.001 -0.002 -0.003 -0.004 -0.005 0 0.5 1 1.5 2 y colour 1 0.8 colour 0.6 u flow = 1 z 1 = 0.5 a = 0.05 0.4 P 0 = 10 z 2 = 1.5 σ = 0.2 0.2 A = 0.01 0 0 0.5 1 1.5 2 y

  11. Results of Lecoanet et al (2016) t = 0 t = 6 t = 2 t = 4

  12. Stratified KH Test of Lecoanet et al (2016) converged here! converged here! converged here! (½ billion grid cells!)

  13. SPH Simulations • I am using the Re=10 5 unstratified (uniform density) KH test ( ) • Comparison to n x = 2048 Dedalus calculation (spectral code) • Goal: obtain convergence of SPH results towards reference solution • Resolution: n x = 256, 512, 1024, 2048 particles (~8 million) • Dissipation Implementation: direct second derivative style for Navier- Stokes viscosity, thermal conduction, and colour diffusion (efficiency, consistency)

  14. SPH results (n x = 1024 particles) t = 0 t = 6 t = 2 t = 4

  15. SPH results (n x = 1024 particles) t = 2 t = 4 SPH Dedalus t = 6

  16. Colour Entropy 0.35 • Define entropy for colour 0.3 0.25 • and total colour entropy S 0.2 0.15 256 512 1024 0.1 2048 2048 Dedalus 0.05 0 2 4 6 8 10 t • Results are converging towards reference solution • Numerical dissipation (artificial viscosity) still relevant up till n x = 1024 or 2048, so don’t except convergence yet

  17. L2 error Convergence (t = 2) 1 t = 2 L2 Error 0.1 ∝ n x -1 0.01 256 512 1024 2048 n x

  18. L2 error Convergence (t = 4) 1 t = 2 1 t = 4 L2 Error 0.1 ∝ n x -1 L2 Error ∝ n x -1 0.01 256 512 1024 2048 0.1 n x 0.01 256 512 1024 2048 n x

  19. L2 error Convergence (t = 6) 1 t = 2 1 t = 6 L2 Error 0.1 ∝ n x -1 L2 Error 0.01 ∝ n x 0 256 512 1024 2048 0.1 n x 1 t = 4 L2 Error ∝ n x -1 0.1 0.01 256 512 1024 2048 n x 0.01 256 512 1024 2048 n x

  20. Kinetic Energy 0.92 0.9 0.88 kinetic energy 0.86 0.84 0.82 256 512 0.8 1024 2048 0.78 0 2 4 6 8 10 t • Dissipation rate of kinetic energy not yet converged! • Expected from analytic translation of artificial viscosity to physical dissipation

  21. Quality of Smoothing Kernel Matters t = 4 Quartic Quintic Cubic Spline Sextic Heptic

  22. Colour Entropy for Quintic Spline 0.35 0.3 0.25 S 0.2 0.15 256 512 0.1 1024 2048 Dedalus 0.05 0 2 4 6 8 10 t

  23. Conclusions • SPH can activate the Kelvin-Helmholtz instability! ( that is, SPH can do hydrodynamics – not a surprise to anyone in this room ) • May need to use n x = 4096 to achieve formal convergence ( 32 million particles – I hope not! ) • Currently running octic and nonic splines (R = 5h!) to check kernel bias convergence. • It may not be as difficult (resolution requirement, kernel bias) to activate KH as found here for other conditions (i.e., Reynolds number). • Not shown, but Wendland family of kernels demonstrate same behaviour. • My belief is that SPH will converge to the agreed solution.

Recommend


More recommend