testing
play

-Testing Sofya Raskhodnikova Penn State University, visiting - PowerPoint PPT Presentation

-Testing Sofya Raskhodnikova Penn State University, visiting Boston University and Harvard Joint work with Piotr Berman (Penn State), Grigory Yaroslavtsev (Penn State Brown) 1 Property Testing Models Tolerant Property Tester


  1. 𝑀 π‘ž -Testing Sofya Raskhodnikova Penn State University, visiting Boston University and Harvard Joint work with Piotr Berman (Penn State), Grigory Yaroslavtsev (Penn State β†’ Brown) 1

  2. Property Testing Models Tolerant Property Tester Property Tester [Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98] [Parnas Ron Rubinfeld 06] YES YES Accept with Accept with probability β‰₯ πŸ‘/πŸ’ probability β‰₯ πŸ‘/πŸ’ 𝜁 1 𝜁 Don’t care 𝜁 2 Close to YES Don’t care Far from Far from Reject with Reject with ο‚³ ο‚³ YES YES probability 2/3 probability 2/3 Equivalent to tolerant testing: estimating distance to the property. Two objects are at distance 𝜁 = they differ in an 𝜁 fraction of places 2

  3. Why Hamming Distance? β€’ Nice probabilistic interpretation – probability that two functions differ on a random point in the domain β€’ Natural measure for – algebraic properties (linearity, low degree) – properties of graphs and other combinatorial objects β€’ Motivated by applications to probabilistically checkable proofs (PCPs) β€’ It is equivalent to other natural distances for – properties of Boolean functions 3

  4. Which stocks grew steadily? Data from http://finance.google.com

  5. 𝑀 π‘ž -Testing for properties of real-valued data

  6. Use 𝑀 π‘ž -metrics to Measure Distances β€’ Functions 𝑔, 𝑕: 𝐸 β†’ 0,1 over (finite) domain 𝐸 β€’ For π‘ž β‰₯ 1 1/π‘ž π‘ž 𝑀 π‘ž 𝑔, 𝑕 = 𝑔 βˆ’ 𝑕 π‘ž = 𝑔 𝑦 βˆ’ 𝑕 𝑦 π‘¦βˆˆπΈ 𝑀 0 𝑔, 𝑕 = 𝑔 βˆ’ 𝑕 0 = 𝑦 ∈ 𝐸: 𝑔 𝑦 β‰  𝑕 𝑦 π’ˆ βˆ’π‘• π‘ž β€’ 𝑒 π‘ž 𝑔, 𝑕 = 1 𝒒 6

  7. 𝑴 𝒒 -Testing and Tolerant 𝑴 𝒒 -Testing Tolerant Property Tester Property Tester YES YES Accept with Accept with probability β‰₯ πŸ‘/πŸ’ probability β‰₯ πŸ‘/πŸ’ 𝜁 1 𝜁 Don’t care 𝜁 2 Close to YES Don’t care Far from Far from Reject with Reject with ο‚³ ο‚³ YES YES probability 2/3 probability 2/3 π‘”βˆ’π‘• π‘ž Functions 𝑔, 𝑕: 𝐸 β†’ [0,1] are at distance 𝜁 if 𝑒 π‘ž = = 𝜁 . 𝟐 π‘ž 7

  8. New 𝑀 π‘ž -Testing Model for Real-Valued Data β€’ Generalizes standard 𝑀 0 -testing β€’ For π‘ž > 0 still have a nice probabilistic interpretation: distance 𝑒 π‘ž 𝑔, 𝑕 = 𝐅 π’ˆ βˆ’ 𝒉 𝒒 1/π‘ž β€’ Compatible with existing PAC-style learning models (preprocessing for model selection) β€’ For Boolean functions, 𝑒 0 𝑔, 𝑕 = 𝑒 π‘ž 𝑔, 𝑕 π‘ž . 8

  9. Our Contributions 1. Relationships between 𝑀 π‘ž -testing models 2. Algorithms – 𝑀 π‘ž -testers for π‘ž β‰₯ 1 β€’ monotonicity, Lipschitz, convexity – Tolerant 𝑀 π‘ž -tester for π‘ž β‰₯ 1 β€’ monotonicity in 1D (aka sortedness)  Our 𝑀 π‘ž -testers beat lower bounds for 𝑀 0 -testers  Simple algorithms backed up by involved analysis  Uniformly sampled (or easy to sample) data suffices 3. Nearly tight lower bounds 9

  10. Implications for 𝑴 𝟏 -Testing Some techniques/observations/results carry over to 𝑀 0 -testing – Improvement on Levin’s work investment strategy Gives improvements in run time of testers for β€’ Connectivity of bounded-degree graphs [Goldreich Ron 02] β€’ Properties of images [R 03] β€’ Multiple-input problems [Goldreich 13] – First example of monotonicity testing problem where adaptivity helps – Improvements to 𝑀 0 -testers for Boolean functions 10

  11. Relationships between 𝑀 π‘ž -Testing Models

  12. Relationships Between 𝑀 π‘ž -Testing Models 𝐷 𝒒 ( 𝑸 , 𝜻 ) = complexity of 𝑀 𝒒 -testing property 𝑸 with distance parameter 𝜻 β€’ e.g., query or time complexity β€’ for general or restricted (e.g., nonadaptive) tests For all properties 𝑸 β€’ 𝑀 𝟐 -testing is no harder than Hamming testing 𝐷 𝟐 ( 𝑸 , 𝜻 ) ≀ 𝐷 𝟏 ( 𝑸 , 𝜻 ) β€’ 𝑀 𝒒 -testing for 𝒒 > 1 is close in complexity to 𝑀 𝟐 -testing 𝐷 𝟐 ( 𝑸 , 𝜻 ) ≀ 𝐷 𝒒 ( 𝑸 , 𝜻 ) ≀ 𝐷 𝟐 ( 𝑸 , 𝜻 𝒒 ) 12

  13. Relationships Between 𝑀 π‘ž -Testing Models 𝐷 𝒒 ( 𝑸 , 𝜻 ) = complexity of 𝑀 𝒒 -testing property 𝑸 with distance parameter 𝜻 β€’ e.g., query or time complexity β€’ for general or restricted (e.g., nonadaptive) tests For properties of Boolean functions π’ˆ: 𝐸 β†’ 0,1 β€’ 𝑀 𝟐 -testing is equivalent to Hamming testing 𝐷 𝟐 ( 𝑸 , 𝜻 ) = 𝐷 𝟏 ( 𝑸 , Ξ΅ ) β€’ 𝑀 𝒒 -testing for 𝒒 > 1 is equivalent to 𝑀 𝟐 -testing with appropriate distance parameter 𝐷 𝒒 ( 𝑸 , 𝜻 ) = 𝐷 𝟐 ( 𝑸 , 𝜻 𝒒 ) 13

  14. Relationships: Tolerant 𝑀 π‘ž -Testing Models 𝐷 𝒒 ( 𝑸 , 𝜻 𝟐 , 𝜻 πŸ‘ ) = complexity of tolerant 𝑀 𝒒 -testing property 𝑸 with distance parameters 𝜁 1 , 𝜁 2 β€’ E.g., query or time complexity β€’ for general or restricted (e.g., nonadaptive) tests For all properties 𝑸 β€’ No obvious relationship between tolerant 𝑀 𝟐 -testing and tolerant Hamming testing β€’ 𝑀 𝒒 -testing for 𝒒 > 1 is close in complexity to 𝑀 𝟐 -testing 𝒒 , Ξ΅ 2 ) ≀ 𝐷 𝒒 ( 𝑸 , 𝜻 𝟐 , 𝜻 πŸ‘ ) ≀ 𝐷 𝟐 ( 𝑸 , 𝜻 𝟐 , 𝜻 πŸ‘ 𝒒 ) 𝐷 𝟐 ( 𝑸 , 𝜻 𝟐 14

  15. Relationships: Tolerant 𝑀 π‘ž -Testing Models 𝐷 𝒒 ( 𝑸 , 𝜻 𝟐 , 𝜻 πŸ‘ ) = complexity of tolerant 𝑀 𝒒 -testing property 𝑸 with distance parameters 𝜁 1 , 𝜁 2 β€’ E.g., query or time complexity β€’ for general or restricted (e.g., nonadaptive) tests For properties of Boolean functions π’ˆ: 𝐸 β†’ 0,1 β€’ 𝑀 𝟐 -testing is equivalent to Hamming testing 𝐷 𝟐 ( 𝑸 , 𝜻 𝟐 , 𝜻 πŸ‘ ) = 𝐷 𝟏 ( 𝑸 , 𝜻 𝟐 , 𝜻 πŸ‘ ) β€’ 𝑀 𝒒 -testing for 𝒒 > 1 is equivalent to 𝑀 𝟐 -testing with appropriate distance parameters d 𝒒 , 𝜻 πŸ‘ 𝒒 ) 𝐷 𝒒 ( 𝑸 , 𝜻 𝟐 , 𝜻 πŸ‘ ) = 𝐷 𝟐 ( 𝑸 , 𝜻 𝟐 15

  16. 𝑃𝑣𝑠 π‘†π‘“π‘‘π‘£π‘šπ‘’π‘‘ Property: Monotonicity

  17. Monotonicity β€’ Domain D= [π‘œ] 𝑒 (vertices of 𝑒 -dim hypercube) (𝑒, 𝑒, 𝑒) β€’ A function 𝑔: 𝐸 β†’ R is monotone if increasing a coordinate of 𝑦 does not decrease 𝑔 𝑦 . β€’ Special case 𝑒 = 1 (1,1,1) 𝑔: [π‘œ] β†’ R is monotone ⇔ 𝑔 1 , … 𝑔(π‘œ) is sorted. One of the most studied properties in property testing [ErgΓΌn Kannan Kumar Rubinfeld Viswanathan , Goldreich Goldwasser Lehman Ron, Dodis Goldreich Lehman R Ron Samorodnitsky, Batu Rubinfeld White, Fischer Lehman Newman R Rubinfeld Samorodnitsky, Fischer, Halevy Kushilevitz, Bhattacharyya Grigorescu Jung R Woodruff, ..., Chakrabarty Seshadhri, Blais R Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri] 17

  18. Monotonicity Testers: Running Time 𝑀 π‘ž 𝑔 𝑀 0 π‘œ Θ log π‘œ 1 Θ β†’ [0,1] 𝜻 π‘ž 𝜻 [ErgΓΌn Kannan Kumar Rubinfeld Viswanathan 00, Fischer 04] π‘œ 𝑒 𝑒 𝑒 Θ 𝑒 β‹… log π‘œ O 𝜻 π‘ž log 𝜻 π‘ž β†’ [0,1] 𝜻 1 1 Ξ© 𝜻 π‘ž log 𝜻 π‘ž for 𝑒 = 2 [Chakrabarty Seshadhri 13] nonadaptive 1-sided error 18

  19. Monotonicity Testers: Running Time 𝑀 π‘ž 𝑔 𝑀 0 π‘œ Θ 1 1 Θ β†’ {0,1} 𝜻 π‘ž 𝜻 𝑒 𝑒 Θ 𝑒 𝜻 β‹… log 3 𝑒 O 𝜻 π‘ž log 𝜻 π‘ž π‘œ 𝑒 𝜻 1 1 Ξ© 𝜻 π‘ž log 𝜻 π‘ž for 𝑒 = 2 β†’ {0,1} [Dodis Goldreich Lehman R Samorodnitsky 99] nonadaptive 1-sided error 1 Θ for constant 𝑒 𝜻 π‘ž adaptive 1-sided error 19

  20. 𝑀 1 -Testing of Monotonicity 20

  21. Monotonicity: Reduction to Boolean Functions Given π’ˆ: 𝐸 β†’ [0,1], a Boolean threshold function π’ˆ (𝒖) : 𝐸 β†’ {0,1} π’ˆ (𝒖) 𝑦 = 1 if π’ˆ 𝑦 β‰₯ 𝑒 0 otherwise π’ˆ (𝒖) 𝑦 1 π’ˆ (𝒖) 𝑦 𝑒𝒖 β€’ Decomposition: 𝑔 𝑦 = 0 1 𝒖 β€’ M = class of monotone functions 0 π’ˆ 𝑦 Characterization Theorem 1 𝑀 1 π’ˆ (𝒖) , 𝑁 𝑒𝒖 𝑀 1 π’ˆ, 𝑁 = 0 21

  22. Characterization Theorem: One Direction 1 𝑀 1 π’ˆ (𝒖) , 𝑁 𝑒𝒖 𝑀 1 π’ˆ, 𝑁 ≀ 0 β€’ βˆ€π‘’ ∈ 0,1 , let 𝑕 𝑒 =closest monotone (Boolean) function to π’ˆ (𝒖) . 1 𝑕 𝑒 𝑒𝒖 . Then 𝒉 is monotone, since 𝑕 𝑒 are monotone. β€’ Let 𝒉 = 0 𝑀 1 π’ˆ, 𝑁 ≀ 𝑔 βˆ’ 𝑕 1 Because 𝒉 is monotone 1 π’ˆ (𝒖) 𝑒𝒖 βˆ’ 0 1 𝑕 𝑒 𝑒𝒖 = 0 Decomposition & definition of 𝒉 1 1 (π’ˆ (𝒖) βˆ’π‘• 𝑒 )𝑒𝒖 = 0 1 1 π’ˆ (𝒖) βˆ’ 𝑕 𝑒 1 𝑒𝒖 ≀ 0 Triangle inequality 1 𝑀 1 π’ˆ (𝒖) , 𝑁 𝑒𝒖 = 0 Definition of 𝑕 𝑒 22

  23. Monotonicity: Using Characterization Theorem Characterization Theorem 1 𝑒 1 π’ˆ (𝒖) , 𝑁 𝑒𝒖 𝑒 1 π’ˆ, 𝑁 = 0 We use Characterization Theorem to get monotonicity 𝑀 1 -testers and tolerant testers from standard property testers for Boolean functions. 23

  24. 𝑀 1 -Testers from Testers for Boolean Ranges A nonadaptive, 1-sided error 𝑀 0 -test for monotonicity of 𝑔: 𝐸 β†’ {0,1} is also an 𝑀 1 -test for monotonicity of 𝑔: 𝐸 β†’ [0,1] . Proof: > π’ˆ(𝒛) π’ˆ(π’š) β€’ A violation (𝑦, 𝑧) : β€’ A nonadaptive, 1-sided error test queries a random set 𝑅 βŠ† 𝐸 and rejects iff 𝑅 contains a violation. β€’ If 𝑔: 𝐸 β†’ [0,1] is monotone, 𝑅 will not contain a violation. β€’ If 𝑒 1 𝑔, 𝑁 β‰₯ 𝜁 then βˆƒπ’– βˆ— : 𝑒 0 π’ˆ (𝒖 βˆ— ) , 𝑁 β‰₯ 𝜻 β€’ W.p. β‰₯ 2/3 , set 𝑅 contains a violation (𝑦, 𝑧) for π’ˆ (𝒖 βˆ— ) π’ˆ (𝒖 βˆ— ) 𝑦 = 1, π’ˆ (𝒖 βˆ— ) 𝑧 = 0 ⇓ π’ˆ 𝑦 > π’ˆ 𝑧 24

Recommend


More recommend