Tensor completion with hierarchical tensors R. Schneider (TUB Matheon), joint work with H. Rauhut and Z. Stojanac Berlin December 2015
I. Classical and novel tensor formats B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 U {1,2} U {1,2,3} (Format � representation closed under linear algebra manipulations)
Setting - Tensors of order d - hyper matrices high-order tensors - multi-indexed arrays (hyper matrices) x = ( x 1 , . . . , x d ) �→ U = U [ x 1 , . . . , x d ] ∈ H i = 1 R n = R ( n d ) � d = � d H := i = 1 V i , e.g.: H Main problem: Let e.g. V = R n d dim V = O ( n d ) − − Curse of dimensionality! e.g. n = 10 , d = 23 , . . . , 100 , 200 � dim H ∼ 10 23 , . . . 10 100 , 10 200 , 6 , 1 · 10 23 Avogadro number, 10 200 is a number much larger than the estimated number of all atoms in the universe! Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities. As for matrices, incomplete SVD: reduces only to √ d 2 = C ♯ DOFs ≥ Cn N curse of dimensionality! r r � � � � u [ x 1 , k ] · ˜ ˜ A [ x 1 , x 2 ] ≈ u k [ x 1 ] ⊗ v k [ x 2 ] = v [ x 2 , k ] k = 1 k = 1
Setting - Tensors of order d - hyper matrices high-order tensors - multi-indexed arrays (hyper matrices) x = ( x 1 , . . . , x d ) �→ U = U [ x 1 , . . . , x d ] ∈ H i = 1 R n = R ( n d ) � d = � d H := i = 1 V i , e.g.: H Main problem: Let e.g. V = R n d dim V = O ( n d ) − − Curse of dimensionality! e.g. n = 10 , d = 23 , . . . , 100 , 200 � dim H ∼ 10 23 , . . . 10 100 , 10 200 , 6 , 1 · 10 23 Avogadro number, 10 200 is a number much larger than the estimated number of all atoms in the universe! Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities. As for matrices, incomplete SVD: reduces only to √ d 2 = C ♯ DOFs ≥ Cn N curse of dimensionality! r r � � � � u [ x 1 , k ] · ˜ ˜ A [ x 1 , x 2 ] ≈ u k [ x 1 ] ⊗ v k [ x 2 ] = v [ x 2 , k ] k = 1 k = 1
Setting - Tensors of order d - hyper matrices high-order tensors - multi-indexed arrays (hyper matrices) x = ( x 1 , . . . , x d ) �→ U = U [ x 1 , . . . , x d ] ∈ H i = 1 R n = R ( n d ) � d = � d H := i = 1 V i , e.g.: H Main problem: Let e.g. V = R n d dim V = O ( n d ) − − Curse of dimensionality! e.g. n = 10 , d = 23 , . . . , 100 , 200 � dim H ∼ 10 23 , . . . 10 100 , 10 200 , 6 , 1 · 10 23 Avogadro number, 10 200 is a number much larger than the estimated number of all atoms in the universe! Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities. We do NOT use: Canonical decomposition for order- d - r tensors: � ⊗ d � � U [ x 1 , . . . , x d ] ≈ i = 1 u i [ x i , k ] . k = 1
Low Rank Matrix Approximation r � U [ x , y ] = U 1 [ x , k ] U 2 [ y , k ] , ♯ = rn 1 + rn 2 << n 1 × n 2 k = 1 Compressive sensing techniques - matrix completion by Candes, Recht & .... Various ways to reshape U [ x 1 , . . . , x d ] into a matrix. Let t ⊂ { 1 , . . . , d } , ♯ t =: j M t ( U ) = ( A x , y ) , x = ( x t 1 , . . . , x t j ) example x := ( x 1 , . . . , x j ) , x := ( x j + 1 , . . . , x d ) , t = { 1 , . . . , j } Basic Assumption Low dimensional subspace assumption M t ( U ) ≈ M ǫ t ( U ) where r t := rank M ǫ t ( U ) = O ( d ) = O ( f ( ǫ ) log n d )) (e.g. f ( ǫ ) = 1 ǫ 2 motivated by Johnson-Lindenstrauß Lemma.)
Low Rank Matrix Approximation ♯ M t ( U ) = O ( rn d − j + rn j ) curse of dimensions!!! A single low rank matrix factorization cannot circumvent the curse of dimensions! Can we benefit from various matricisation M t 1 ( U ) , M t 2 ( U ) , . . . ? Yes, we can! Idea replicate low rank matrix factorization (HT) � U [ x 1 , . . . , x j , x j + 1 , . . . , x d ] = U L [ x 1 , . . . , x j , k ] U R [ k , x j + 1 , . . . , x d ] k � U LL [ k ′ , k , x 1 , . . . ] U LR [ . . . , x j , k ′ ] etc . U L [ k , x 1 , . . ., . . . , x j ] = k ′ Prototype example. TT tensor trains r 1 � U [ x 1 , x 2 , . . . , x d ] = U 1 [ x 1 , k 1 ] V 1 [ k 1 , x 2 , . . . , x d ] k 1 = 1 r 2 � V 1 [ k 1 , x 2 , x 3 , . . . , x d ] = U 2 [ k 1 , x 2 , k 2 ] V 2 [ k 2 , x 3 , . . . , x d ] etc . k 2 = 1 � � U [ x 1 , . . . , x d ] = U 1 [ x 1 , k 1 ] U 2 [ k 1 , x 2 , k 2 ] · · · U i [ k i − 1 , x i , k i ] · · · U d [ k d − 1 , x d ] k 1 ,..., k d − 1
Low Rank Matrix Approximation ♯ M t ( U ) = O ( rn d − j + rn j ) curse of dimensions!!! A single low rank matrix factorization cannot circumvent the curse of dimensions! Can we benefit from various matricisation M t 1 ( U ) , M t 2 ( U ) , . . . ? Yes, we can! Idea replicate low rank matrix factorization (HT) � U [ x 1 , . . . , x j , x j + 1 , . . . , x d ] = U L [ x 1 , . . . , x j , k ] U R [ k , x j + 1 , . . . , x d ] k � U LL [ k ′ , k , x 1 , . . . ] U LR [ . . . , x j , k ′ ] etc . U L [ k , x 1 , . . ., . . . , x j ] = k ′ Prototype example. TT tensor trains r 1 � U [ x 1 , x 2 , . . . , x d ] = U 1 [ x 1 , k 1 ] V 1 [ k 1 , x 2 , . . . , x d ] k 1 = 1 r 2 � V 1 [ k 1 , x 2 , x 3 , . . . , x d ] = U 2 [ k 1 , x 2 , k 2 ] V 2 [ k 2 , x 3 , . . . , x d ] etc . k 2 = 1 � � U [ x 1 , . . . , x d ] = U 1 [ x 1 , k 1 ] U 2 [ k 1 , x 2 , k 2 ] · · · U i [ k i − 1 , x i , k i ] · · · U d [ k d − 1 , x d ] k 1 ,..., k d − 1
Low Rank Matrix Approximation ♯ M t ( U ) = O ( rn d − j + rn j ) curse of dimensions!!! A single low rank matrix factorization cannot circumvent the curse of dimensions! Can we benefit from various matricisation M t 1 ( U ) , M t 2 ( U ) , . . . ? Yes, we can! Idea replicate low rank matrix factorization (HT) � U [ x 1 , . . . , x j , x j + 1 , . . . , x d ] = U L [ x 1 , . . . , x j , k ] U R [ k , x j + 1 , . . . , x d ] k � U LL [ k ′ , k , x 1 , . . . ] U LR [ . . . , x j , k ′ ] etc . U L [ k , x 1 , . . ., . . . , x j ] = k ′ Prototype example. TT tensor trains r 1 � U [ x 1 , x 2 , . . . , x d ] = U 1 [ x 1 , k 1 ] V 1 [ k 1 , x 2 , . . . , x d ] k 1 = 1 r 2 � V 1 [ k 1 , x 2 , x 3 , . . . , x d ] = U 2 [ k 1 , x 2 , k 2 ] V 2 [ k 2 , x 3 , . . . , x d ] etc . k 2 = 1 � � U [ x 1 , . . . , x d ] = U 1 [ x 1 , k 1 ] U 2 [ k 1 , x 2 , k 2 ] · · · U i [ k i − 1 , x i , k i ] · · · U d [ k d − 1 , x d ] k 1 ,..., k d − 1
Hierarchical subspace approximation, e.g. TT Let U ∈ H . For all j = 1 , . . . , d − 1 we reshape U into matrices U [ x 1 , . . . , x j , x j + 1 , . . . , x d ] =: M j ( U )[ x , y ] ∈ V j x ⊗ ( V j y ) ′ where V j x := V 1 ⊗ · · · ⊗ V j , V j y := V j + 1 ⊗ · · · ⊗ V d 1. Low dim. subspace assumption : ∀ j = 1 , . . . , d − 1, dim V j x =: r j is moderate (sub-space approximation) V j = span { φ k j [ x ] = φ k j [ x 1 , . . . , x j ] : k j = 1 , . . . , r j } and V j := V j ⊗ V j + 1 ⊗ · · · ⊗ V d ⊂ V j ⊗ V j + 1 ⇒ nestedness V j + 1 ⊂ V j V j + 1 ⇒ x we have a tensorial multi-resolution analysis, � a tensor MRA or T-MRA. However we have modify the concept slightly. The unbalanced tree for TT is only an example for general dimension trees T
Hierarchical subspace approximation (e.g. TT) and tensor MRA Nestedness: V j + 1 ⊂ V j , V j = V j + 1 + W j + 1 ⇒ V j + 1 ⊂ V j ⊗ V j + 1 so far W j + 1 has been ignored!!! recursive SVD (HSVD) � 2-scale refinement rel.: 1 ≤ k j ≤ r j r j − 1 � φ k j [ x 1 , . . . , x j − 1 , x j ] := U j [ k j − 1 , α j , k j ] φ k j − 1 [ x 1 , . . . , x j − 1 ] ⊗ e α j [ x j ] k j − 1 = 1 for simplicity let us take e α j [ x j ] = δ α j , x j . We need only U j [ k j − 1 , x j , k j ] , j = 1 , . . . , d to define full tensor U ⇒ complexity O ( nr 2 d ) � U [ x 1 , . . . , x d ] = U 1 [ x 1 , k 1 ] U 2 [ k 1 , x 2 , k 2 ] · · · U i [ k i − 1 , x i , k i ] · · · U d [ k d − 1 , x d ] k 1 ,..., k d − 1 This is an adaptive MRA, or non stationary sub-division like algorithm where V d = span { φ d } , φ d [ x 1 , . . . , x d ] = U [ x 1 , . . . , x d ] , dim V d = 1 !
General Hierarchical Tensor (HT) format ⊲ General hierarchical tensor setting ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )
General Hierarchical Tensor (HT) format ⊲ Given dimension tree � a manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )
General Hierarchical Tensor (HT) format ⊲ Given dimension tree � a manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )
General Hierarchical Tensor (HT) format ⊲ Given dimension tree � a manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )
General Hierarchical Tensor (HT) format ⊲ Given dimension tree � a manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 U {1,2} (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )
General Hierarchical Tensor (HT) format ⊲ Given dimension tree � a manifold! ⊲ Subspace approach (Hackbusch/K¨ uhn, 2009) B {1,2,3,4,5} B B {1,2,3} {4,5} B U U 4 U {1,2} 3 5 U U 1 2 U {1,2} U {1,2,3} (Example: d = 5 , U i ∈ R n × k i , B t ∈ R k t × k t 1 × k t 2 )
Recommend
More recommend