temporal reasoning for planning scheduling and execution
play

Temporal Reasoning for Planning, Scheduling and Execution in - PowerPoint PPT Presentation

Temporal Reasoning for Planning, Scheduling and Execution in Autonomous Agents AAMAS-2005 Tutorial (T4) Nicola Muscettola, Ioannis Tsamardinos, and Luke Hunsberger AAMAS-2005 Tutorial T4 1 Luke Hunsberger Simple Temporal


  1. Temporal Reasoning for Planning, Scheduling and Execution in Autonomous Agents AAMAS-2005 Tutorial (T4) Nicola Muscettola, Ioannis Tsamardinos, and Luke Hunsberger AAMAS-2005 Tutorial • T4 – 1 • Luke Hunsberger

  2. Simple Temporal Networks AAMAS-2005 Tutorial • T4 – 2 • Luke Hunsberger

  3. Temporal Constraints on an Action Starting Ending A Time-Point Time-Point t 2 t 1 t 1 ≥ 4 ( A starts at or after 4) t 2 ≤ 12 ( A ends at or before 12) 3 ≤ t 2 − t 1 ≤ 6 ( A ’s dur. between 3 and 6) AAMAS-2005 Tutorial • T4 – 3 • Luke Hunsberger

  4. Temporal Constraints on Airline Travel Goal: Fly from Boston to Seattle: • Leave Boston after 4 p.m. on Aug. 8; • Return to Boston before 10 p.m., Aug. 18; • Away from Boston no more than 7 days; • In Seattle at least 5 days; and • Return flight lasts no more than 7 hours. AAMAS-2005 Tutorial • T4 – 4 • Luke Hunsberger

  5. Simple Temporal Network (STN) ∗ A Simple Temporal Network (STN) is a pair, S = ( T , C ) , where: • T is a set of time-point variables: { t 0 , t 1 , . . . , t n − 1 } and • C is a set of binary constraints, each of the form: t j − t i ≤ δ , where δ is a real num- ber. ∗ (Dechter, Meiri, & Pearl 1991) AAMAS-2005 Tutorial • T4 – 5 • Luke Hunsberger

  6. Solutions, Consistency, Equivalence • A solution to an STN S = ( T , C ) is a com- plete set of variable assignments: { t 0 = w 0 , t 1 = w 1 , . . . , t n − 1 = w n − 1 } that satisfies all the constraints in C . • An STN with at least one solution is called consistent. • STNs with identical solution sets are called equivalent . AAMAS-2005 Tutorial • T4 – 6 • Luke Hunsberger

  7. The Zero Time-Point Variable • Frequently, it is useful to fix one of the time- point variables to 0. That “variable” will often be called z. • Binary constraints involving z are equivalent to unary constraints: t j − z ≤ 5 ⇐ ⇒ t j ≤ 5 z − t i ≤ − 3 ⇐ ⇒ t i ≥ 3 AAMAS-2005 Tutorial • T4 – 7 • Luke Hunsberger

  8. STN for Constrained Action z = 0 T = { z , t 1 , t 2 } , where: t 1 = Start of A t 2 = End of A   t 2 − t 1 ≤ 6 ( Dur . less than 6 )         t 1 − t 2 ≤ − 3 ( Dur . greater than 3 )       C =       z − t 1 ≤ − 4 ( A starts after 4 )             t 2 − z ≤ 12 ( A ends before 12 )   AAMAS-2005 Tutorial • T4 – 8 • Luke Hunsberger

  9. STN for Constrained Air Travel T = { z, t 1 , t 2 , t 3 , t 4 } , where z = Noon, Aug. 8. C =   z − t 1 ≤ − 4 ( Lv Bos after 4 p . m ., 8 / 8 )                   t 4 − z ≤ 250 ( Av Bos by 10 p . m ., 8 / 18 )                       t 4 − t 1 ≤ 168 ( Gone no more than 7 days )             t 2 − t 3 ≤ − 120 ( In Seattle at least 5 days )                       t 4 − t 3 ≤ 7 ( Return flight less than 7 hrs )           AAMAS-2005 Tutorial • T4 – 9 • Luke Hunsberger

  10. Graphical Representation of an STN ∗ The Distance Graph for an STN, S = ( T , C ) , is a graph, G = ( T , E ) , where: • Time-points in S correspond to nodes in G . • Constraints in C correspond to edges in E : δ tj − ti ≤ δ ti tj ∗ (Dechter, Meiri, & Pearl 1991) AAMAS-2005 Tutorial • T4 – 10 • Luke Hunsberger

  11. Distance Graph for Action Scenario   t 2 − t 1 ≤ 6             t 1 − t 2 ≤ − 3         T = { z , t 1 , t 2 } C =   z − t 1 ≤ − 4               t 2 − z ≤ 12         6 t 2 t 1 -3 12 -4 z AAMAS-2005 Tutorial • T4 – 11 • Luke Hunsberger

  12. Distance Graph for Airline Scenario  z − t 1 ≤ − 4 , t 4 − z ≤ 250              t 4 − t 1 ≤ 168 , t 2 − t 3 ≤ − 120           t 4 − t 3 ≤ 7 , t 1 − t 2 ≤ 0              t 3 − t 4 ≤ 0 ,          168 7 -120 0 t 1 t 4 t 2 0 t 3 250 -4 z AAMAS-2005 Tutorial • T4 – 12 • Luke Hunsberger

  13. Implicit Constraints Explicit constraints in C can combine to form implicit constraints: t j t j − t i ≤ 30 40 30 t k − t j ≤ 40 t k t k − t i ≤ 70 t i 70 AAMAS-2005 Tutorial • T4 – 13 • Luke Hunsberger

  14. Implicit Constraints as Paths • Chains of implicit constraints in an STN cor- respond to paths in its Distance Graph. • Stronger/strongest implicit constraints cor- respond to shorter/shortest paths. 4 3 6 t j 9 5 t i 4 2 3 AAMAS-2005 Tutorial • T4 – 14 • Luke Hunsberger

  15. Distance Matrix ∗ The Distance Matrix for an STN, S = ( T , C ) , is a matrix D defined by: Length of Shortest Path D ( t i , t j ) = from t i to t j in the Distance Graph for S D ( t i , t j ) t j t i (Dechter, Meiri, & Pearl 1991) AAMAS-2005 Tutorial • T4 – 15 • Luke Hunsberger

  16. Distance Matrix (cont’d.) • The strongest implicit constraint on t i and t j in S is: t j − t i ≤ D ( t i , t j ) • Abuse of notation: D ( i , j ) instead of D ( t i , t j ) • D is the All-Pairs, Shortest-Path Matrix for the Distance Graph (Cormen, Leiserson, & Rivest 1990). AAMAS-2005 Tutorial • T4 – 16 • Luke Hunsberger

  17. Distance Matrix for Action Scenario 6 t 2 t 1 -3 12 -4 z z t 1 t 2 D z 0 9 12 t 1 -4 0 6 t 2 -7 -3 0 AAMAS-2005 Tutorial • T4 – 17 • Luke Hunsberger

  18. Distance Matrix for Airline Scenario 168 7 -120 0 t 1 t 4 t 2 t 3 0 -4 250 z z t 1 t 2 t 3 t 4 D z 0 130 130 250 250 t 1 -4 0 48 168 168 t 2 -4 0 0 168 168 t 3 -124 -120 -120 0 7 t 4 -124 -120 -120 0 0 AAMAS-2005 Tutorial • T4 – 18 • Luke Hunsberger

  19. Checking Consistency of an STN Given an STN S with Distance Graph G and Distance Matrix D , the following are equiva- lent (Dechter, Meiri, & Pearl 1991): • S is consistent. • Each loop in G has path length ≥ 0. • The main diagonal of D contains only 0s. AAMAS-2005 Tutorial • T4 – 19 • Luke Hunsberger

  20. Computing D from Scratch Polynomial algorithms for computing the All- Pairs, Shortest-Path Matrix (Cormen, Leiser- son, & Rivest 1990): Floyd-Warshall Algorithm: O ( n 3 ) • Johnson’s Algorithm: O ( n 2 log n + nm ) • AAMAS-2005 Tutorial • T4 – 20 • Luke Hunsberger

  21. Adding Constraint to Consistent STN • Given: S = ( T , C ) , a consistent STN. • Adding the new constraint, t j − t i ≤ δ , to S will maintain the consistency of S iff: −D ( j , i ) ≤ δ (i.e., 0 ≤ D ( j , i ) + δ ). D ( j , i ) t j δ t i Note: This result is stated in different forms by many authors (Dechter, Meiri, & Pearl 1991; Demetrescu & Italiano 2002; Tsamardinos & Pollack 2003; Hunsberger 2003; Rohnert 1985). AAMAS-2005 Tutorial • T4 – 21 • Luke Hunsberger

  22. Rigidly Connected Time-Points For consistent STNs, the following are equivalent: • ( t j − t i ) = δ , for some δ . • D ( i , j ) + D ( j , i ) = 0 • t i and t j belong to a loop of path-length 0. D ( j , i ) = − δ t j D ( i , j ) = δ t i AAMAS-2005 Tutorial • T4 – 22 • Luke Hunsberger

  23. Rigidly Connected Time-Points (ctd.) • t i and t j are said to be rigidly connected if D ( i , j ) = −D ( j , i ) . • A set of time-points that are pairwise rigidly connected form a rigid component . t j -4 -3 3 4 7 t k t i -7 Note: Many authors consider rigidly connected time-points and rigid components (Tsamardinos, Muscettola, & Morris 1998; Gerevini, Perini, & Ricci 1996; Wetprasit & Sattar 1998). AAMAS-2005 Tutorial • T4 – 23 • Luke Hunsberger

  24. Examples of Rigid Components t 2 t 2 8 -3 -3 3 5 t 3 t 3 t 1 t 1 -5 -5 Cyclical representation requires the fewest edges. AAMAS-2005 Tutorial • T4 – 24 • Luke Hunsberger

  25. Adding Constraints to Consistent STNs Result of adding the constraint, t j − t i ≤ δ : Consistent, Consistent, Rigid Consistent, Non-rigid Redundant Inconsistent δ −D ( j , i ) D ( i , j ) Consistent Rohnert (1985) distinguishes most of these cases. AAMAS-2005 Tutorial • T4 – 25 • Luke Hunsberger

  26. Finding a Solution to an STN ∗ While some time-points in are not rigid with z, Pick some t i not rigidly connected to z. Pick some δ ∈ [ −D ( t i , z ) , D ( z , t i )] . Add the constraint, t i = δ (i.e., t i − z ≤ δ and z − t i ≤ − δ ). ∗ This algorithm derives from Dechter et al. (1991). AAMAS-2005 Tutorial • T4 – 26 • Luke Hunsberger

Recommend


More recommend