Technical systems in the BDS R. Tom´ as Thanks to the input of many: D. Angal-Kalinin, G. Burt, B. Dalena, J.L. Fernandez, L. Gatignon, M. Modena, J. Osborne, J. Resta, H. Schmickler, D. Schulte, A. Seryi, J. Snuverink, G. Zamudio IWLC 2010, October 2010 Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.1/33
Contents • 500 GeV and 3 TeV BDS optics, beam pipe aperture and layouts • instrumentation: emittance, energy measurements • tune-up dump • Polarization measurement • Collimation • FFS, different L* and tuning • QD0 specifications • Crab cavity specifications • magnets, quads, dipoles, specs Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.2/33
The 500 GeV BDS Diagnostics Collimation Final Focus system 400 0.4 1/2 β x 350 1/2 β y 0.3 D x 300 0.2 β 1/2 [m 1/2 ] 250 0.1 D [m] 200 0 150 -0.1 100 -0.2 50 0 -0.3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Longitudinal location [km] Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.3/33
The 3 TeV BDS Diagnostics Energy Transverse Final collimation collimation Focus system 600 0.45 1/2 β x 0.4 1/2 β y 500 0.35 D x 0.3 400 β 1/2 [m 1/2 ] 0.25 D [m] 300 0.2 0.15 200 0.1 0.05 100 0 0 -0.05 0 0.5 1 1.5 2 2.5 3 Longitudinal location [km] Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.4/33
Beam pipe apertures 25 3Tev 500Gev 20 Radius [mm] 15 10 5 0 -3 -2.5 -2 -1.5 -1 -0.5 0 Longitudinal location [km] Reference beam pipe radius 8 mm at 3 TeV and 12 at 500 GeV. Tight apertures (3-5mm) at 3.5 TeV (FFS). Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.5/33
The tunnel Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.6/33
The layouts and the tunnel in 2009 4 3 3Tev e - BDS 2 500Gev e - BDS (previous) Tunnel x[m] 1 0 IP -1 -2 -3000 -2500 -2000 -1500 -1000 -500 0 s[m] Not enough space for both beam lines! Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.7/33
The layouts and the tunnel fixed 4 3 3Tev e - BDS 2 tune-up dump(?) 500Gev e - BDS Tunnel? x[m] 1 500GeV 18.6mrad linac (0.6mrad) 0 IP 3TeV 20mrad -1 -2 -3000 -2500 -2000 -1500 -1000 -500 0 s[m] Enough space and both beam lines aligned to the linac Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.8/33
Diagnostics: emittance measurement SQ1 SQ3 SQ2 SQ4 LW1 LW2LW3 LW4 End of Linac - Diagnostics section 400. β x (m), β y (m) β x β y 350. 300. 250. 200. 150. 100. 50. 0.0 0.0 50. 100. 150. 200. 250. 300. 350. 400. s (m) σ y =1 µm @ Laser wires (for ǫ y =20nm) Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.9/33
Diagnostics inside collimation Diagnostics-Collimation 120. 0.300 [*10**( 3)] x (m) β x β y D x 0.275 D 100. 0.250 0.225 80. 0.200 y (m) 0.175 x (m), β 60. 0.150 0.125 β 40. 0.100 0.075 20. 0.050 0.025 0.0 0.0 0.0 200. 400. 600. 800. 1000. s (m) Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.10/33
Layout & photon collection Beam diagnostics beam line 0.1 Horizontal displacement [m] 0.05 photon detector Laser wire photons 0 -0.05 Dipoles for energy col. -0.1 400 500 600 700 800 900 1000 1100 1200 Longitudinal location [m] Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.11/33
CLIC compact energy measurement First Collimation Dipole as Spectrometer First Collimation Dipole as Spectrometer BPM ( σ =0.1 µ m) BPM ( σ =0.1 µ m) 5 × 10 -4 m 5 × 10 -4 m BL=0.125 Tm BL=0.125 Tm ∆ (BL)/BL ≈ 10 -4 ∆ (BL)/BL ≈ 10 -4 α =2.5 × 10 -5 rad α =2.5 × 10 -5 rad BPM BPM BPM BPM B ρ =5000 Tm B ρ =5000 Tm 20m 20m ∆ E/E= ∆α/α ⊕ ∆ (BL)/BL ≈ 3.6 × 10 -4 ∆ E/E= ∆α/α ⊕ ∆ (BL)/BL ≈ 3.6 × 10 -4 Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.12/33
BDS dumps: tune-up and main dump Tunnel widens up to 10m in the extraction region Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.13/33
1 st option: 2 extraction points 0.2 500GeV 18.6mrad linac (0.6mrad) IP 0 3TeV 20mrad -0.2 x[m] -0.4 -0.6 extraction & transfer lines -0.8 Tune-up dump -1 -3000 -2500 -2000 -1500 -1000 -500 0 s[m] 3Tev e - BDS Total of 4 dumps tune-up dump(?) 500Gev e - BDS Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.14/33
2 nd option: 1 extraction point 0.2 500GeV 18.6mrad 0.1 linac (0.6mrad) IP 0 -0.1 3TeV 20mrad -0.2 x[m] -0.3 extraction line -0.4 Tune-up dump -0.5 -0.6 -0.7 -3000 -2500 -2000 -1500 -1000 -500 0 s[m] Total of 4 dumps Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.15/33
3 rd option: use main dump 0.2 500GeV 18.6mrad 0.1 linac (0.6mrad) 0 main dump -0.1 3TeV 20mrad -0.2 x[m] -0.3 extraction line -0.4 -0.5 -0.6 -0.7 -0.8 -3000 -2500 -2000 -1500 -1000 -500 0 s[m] Total of 2 dumps 3Tev e - BDS Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.16/33 tune-up dump(?)
Polarization measurement 0.5 BDS layout IP directions (0.6mrad) 0 -0.5 x[m] -1 -1.5 -2 0 500 1000 1500 2000 2500 3000 Longitudinal location [m] Best location parallel to IP at about 700m. Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.17/33
Polarization measurement (P . Schuler) • IP laser at 742 m • Standard Q-switched YAG laser (100mJ at 532nm wavelength) • 10mrad and a laser spot size of 50 mm • Compton electron detector at s=907 m • 12 larger aperture dipoles (up to 300mm) are required from IP laser to the Compton electrons detector • Resolution: 0.61% and 0.08% for measurement times of 1 s and 60 s, respectively Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.18/33
The collimators I 0.2 500GeV 18.6mrad 0.1 linac (0.6mrad) IP 0 -0.1 3TeV 20mrad -0.2 x[m] -0.3 -0.4 3Tev e - BDS -0.5 500Gev e - BDS collimators -0.6 -0.7 -3000 -2500 -2000 -1500 -1000 -500 0 s[m] Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.19/33
The collimators II Name Geom. Mat. β x β y D x a x a y [m] [m] [m] [mm] [mm] EYSP 1406 70681 0.27 3.51 25.4 rect Be EYAB 3213 39271 0.42 5.41 25.4 rect Ti the following × 4 YSP1 114 483.2 0. 8. 0.1 rect Ti? XSP1 270 101.3 0. 0.12 8. rect Ti? XAB1 270 80.90 0. 1. 1. ellip Ti YAB1 114 483.1 0. 1. 1. ellip Ti Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.20/33
The Be spoiler 0.5 X = 17.65 cm 0 ��������������������� ��������������������� − ��������������������� ��������������������� 1.5 TeV e beam Be ��������������������� ��������������������� 2 mm θ =0.03 ��������������������� ��������������������� b=6.21 mm rad T ��������������������� ��������������������� a=3.51 mm z First design. Presently under optimization. Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.21/33
Spoiler angle optimization (J. Resta) 8 mrad tapering angle gives better performance than 30 mrad. Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.22/33
Temperature after beam impact Increment of temperature in a Be spoiler with shallow tapers (no body) hit by a CLIC train 280 260 Temperature increment [K] 240 220 200 180 160 140 0 20 40 60 80 100 120 140 Distance [mm] No risk of melting. Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.23/33
Stress from beam impact (J.L. Fernandez) No risk of fracture, but collimators should be tested for compressive stresses up to 200 MPa. Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.24/33
Total and peak luminosities Vs L* L* total lumi peak lumi 10 34 cm − 2 s − 1 10 34 cm − 2 s − 1 m 3.5 6.9 2.5 4.3 6.4 2.4 6 5.0 2.1 8 4.0 1.7 Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.25/33
Tuning performance for different L* B. Dalena & G. Zamudio relative absolute L* prealignment success success [m] [ µ m] [%] [%] 87 ∗ 3.5 10 65 4.3 10 80 100 6 8 80 90 8 2 80 46 ∗ very recent improvement with new design and tuning knobs Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.26/33
Some QD0 specifications L* m 3.5 4.3 6.0 8.0 Gradient T/m 575 382 200 211 Length m 2.7 3.3 4.7 4.2 Beam aperture mm 3.5 6.7 8 8.5 Jitter tolerance nm 0.15 0.15 0.2 0.18 10 − 6 Gradient tol 5 5 - 3 Prealign. µ m 10 10 8 2 Long. prealign. µ m 25 - 40 - Rogelio Tom´ as Garc´ ıa Technical systems in the BDS – p.27/33
Recommend
More recommend