t s pr t s pr ss
play

ts Pr ts - PowerPoint PPT Presentation

ts Pr ts Prss P Ptq r


  1. ❈♦♥t✐♥✉♦✉s Pr✐♠❛❧✲❉✉❛❧ ▼❡t❤♦❞s ✐♥ ■♠❛❣❡ Pr♦❝❡ss✐♥❣ ▼✐❝❤❛❡❧ ●♦❧❞♠❛♥ ❈▼❆P✱ P♦❧②t❡❝❤♥✐q✉❡ ❆♣r✐❧ ✷✵✶✷

  2. ■♥tr♦❞✉❝t✐♦♥ ▼❛①✐♠❛❧ ♠♦♥♦t♦♥❡ ♦♣❡r❛t♦rs ❆♣♣❧✐❝❛t✐♦♥ t♦ t❤❡ ✐♥✐t✐❛❧ ♣r♦❜❧❡♠ ◆✉♠❡r✐❝❛❧ ✐❧❧✉str❛t✐♦♥

  3. ■♥tr♦❞✉❝t✐♦♥

  4. ▼❛♥② ♣r♦❜❧❡♠s ✐♥ ✐♠❛❣❡ ♣r♦❝❡ss✐♥❣ ❝❛♥ ❜❡ s♦❧✈❡❞ ❜② ♠✐♥✐♠✐③✐♥❣ � ❏ ( ✉ ) = | ❉✉ | + ● ( ✉ ) Ω ✇❤❡r❡ ● ✐s ❛ ❝♦♥✈❡① ❧s❝ ❢✉♥❝t✐♦♥ ♦♥ ▲ ✷ ✳ ❊①❛♠♣❧❡ ✿ t❤❡ ❞❡♥♦✐s✐♥❣ ✉s✐♥❣ t❤❡ ❘❖❋ ♠♦❞❡❧ ❝♦rr❡s♣♦♥❞s t♦ ● ( ✉ ) = λ ✷ | ✉ − ❢ | ✷ ❝❛♥ ❜❡ ✉s❡❞ ❢♦r ③♦♦♠✐♥❣✱ ❞❡❜❧✉rr✐♥❣✱ ✐♥♣❛✐♥t✐♥❣ ❡t❝✳✳✳

  5. ❖✉r ❛♣♣r♦❛❝❤ ❡①t❡♥❞s t♦ ✿ ◮ ♠♦r❡ ❣❡♥❡r❛❧ ❝♦♥✈❡① ❢✉♥❝t✐♦♥❛❧s ✇✐t❤ ❛t ❧❡❛st ❧✐♥❡❛r ❣r♦✇t❤ � ❏ ( ✉ ) = ❋ ( ① , ❉✉ ) + ● ( ✉ ) Ω ✇❤❡r❡ ❋ ✐s ❝♦♥✈❡① ✐♥ ♣ ❛♥❞ ❋ ( ① , ♣ ) ≥ ❈ | ♣ | α ✇✐t❤ α ≥ ✶✱ ◮ ♣r♦❜❧❡♠s ✇✐t❤ ❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥s✳

  6. ■❞❡❛ ♦❢ t❤❡ ♠❡t❤♦❞ ❘❡♠✐♥❞❡r ✿ ❚❤❡ t♦t❛❧ ✈❛r✐❛t✐♦♥ ✐s ❞❡✜♥❡❞ ❛s � � | ❉✉ | = s✉♣ ✉ ❞✐✈ ξ Ω Ω ξ ∈C ✶ ❝ (Ω) | ξ | ∞ ≤ ✶ ❚❤❡ ♠✐♥✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠ t❤❡♥ r❡❛❞s � ✉ ∈ ❇❱ ❏ ( ✉ ) = ♠✐♥ ♠✐♥ s✉♣ − ✉ ❞✐✈ ξ + ● ( ✉ ) ✉ ∈ ❇❱ Ω ξ ∈C ✶ ❝ (Ω) | ξ | ∞ ≤ ✶ ⇒ ■t ❝❛♥ t❤✉s ❜❡ r❡❝❛st❡❞ ❛s ❛ s❛❞❞❧❡ ♣♦✐♥t ♣r♦❜❧❡♠

  7. ❚❤❡ ❆rr♦✇✲❍✉r✇✐❝③ ▼❡t❤♦❞ ❋♦r ❛ ❢✉♥❝t✐♦♥ ❑ ✱ t❤❡ ❆rr♦✇✲❍✉r✇✐❝③ ♠❡t❤♦❞ r❡❛❞s  ∂ ✉ ∂ t = −∇ ✉ ❑ ( ✉ , ξ )  ∂ξ ∂ t = ∇ ξ ❑ ( ✉ , ξ )  ■t ✐s ❛ ❣r❛❞✐❡♥t ❞❡s❝❡♥t ✐♥ t❤❡ Pr✐♠❛❧ ✈❛r✐❛❜❧❡ ✉ ❛♥❞ ❛ ❣r❛❞✐❡♥t ❛s❝❡♥t ✐♥ t❤❡ ❉✉❛❧ ✈❛r✐❛❜❧❡ ξ ✳

  8. ✇❤✐❝❤ ❢♦r♠❛❧❧② ❧❡❛❞s t♦ ✿ ✉ ❞✐✈ ● ✉ t ❉✉ ✶ t ❚❤✐s ✐s ❡①❛❝t❧② t❤❡ ♠❡t❤♦❞ ♣r♦♣♦s❡❞ ❜② ❆♣♣❧❡t♦♥ ❛♥❞ ❚❛❧❜♦t✳ ■t ❝♦rr❡s♣♦♥❞s t♦ t❤❡ ❝♦♥t✐♥✉♦✉s ❛♥❛❧♦❣✉❡ ♦❢ t❤❡ ♠❡t❤♦❞ ♣r♦♣♦s❡❞ ❜② ❈❤❛♥ ❛♥❞ ❩❤✉✳ � ■❢ ❑ ( ✉ , ξ ) = − ✉ ❞✐✈ ξ + ● ( ✉ ) t❤❡♥ Ω  ∇ ✉ ❑ = − ❞✐✈ ξ + ∂ ● ( ✉ )  ∇ ξ ❑ = ❉✉ 

  9. � ■❢ ❑ ( ✉ , ξ ) = − ✉ ❞✐✈ ξ + ● ( ✉ ) t❤❡♥ Ω  ∇ ✉ ❑ = − ❞✐✈ ξ + ∂ ● ( ✉ )  ∇ ξ ❑ = ❉✉  ✇❤✐❝❤ ❢♦r♠❛❧❧② ❧❡❛❞s t♦ ✿  ∂ ✉ ∂ t = ❞✐✈ ξ − ∂ ● ( ✉ )  ∂ξ ∂ t = ❉✉ | ξ | ∞ ≤ ✶  ❚❤✐s ✐s ❡①❛❝t❧② t❤❡ ♠❡t❤♦❞ ♣r♦♣♦s❡❞ ❜② ❆♣♣❧❡t♦♥ ❛♥❞ ❚❛❧❜♦t✳ ■t ❝♦rr❡s♣♦♥❞s t♦ t❤❡ ❝♦♥t✐♥✉♦✉s ❛♥❛❧♦❣✉❡ ♦❢ t❤❡ ♠❡t❤♦❞ ♣r♦♣♦s❡❞ ❜② ❈❤❛♥ ❛♥❞ ❩❤✉✳

  10. ❚❤❡♦r❡♠ ❚❤❡ ❈❛✉❝❤② ♣r♦❜❧❡♠ ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤❡ ♣r❡✈✐♦✉s s②st❡♠ ❛s ❛ ✉♥✐q✉❡ s♦❧✉t✐♦♥✳ ✷ | ✉ − ❢ | ✷ t❤❡♥ t❤✐s s♦❧✉t✐♦♥ ❝♦♥✈❡r❣❡s t♦✇❛r❞ ▼♦r❡♦✈❡r✱ ✐❢ ● ( ✉ ) = λ t❤❡ ♠✐♥✐♠✐③❡r ✉ ♦❢ ❏ ❛♥❞ ✇❡ ❤❛✈❡ t❤❡ ❛ ♣♦st❡r✐♦r✐ ❡st✐♠❛t❡ �   ✶ | ∂ t ✉ | ✷ | ✉ − ✉ | ≤ ✶  | ∂ t ✉ | + ✽ | Ω | ✷ + | ∂ t ξ |  λ ✷ ✷ λ λ

  11. ❈r✉❝✐❛❧ ♦❜s❡r✈❛t✐♦♥ ❋♦r♠❛❧❧② ✇❡ ❤❛✈❡ ✿ � − ❞✐✈ ξ + ∂ ● ( ✉ ) � ✉ � � · = ∂ ● ( ✉ ) · ✉ ≥ ✵ − ❉✉ ξ ❚❤✉s t❤❡ ♦♣❡r❛t♦r ❞❡✜♥✐♥❣ t❤❡ s②st❡♠ ✐s ♠♦♥♦t♦♥❡✳

  12. ▼❛①✐♠❛❧ ♠♦♥♦t♦♥❡ ♦♣❡r❛t♦rs ❉❡✜♥✐t✐♦♥ ▲❡t ❍ ❜❡ ❛ ❍✐❧❜❡rt s♣❛❝❡✳ ❆♥ ♦♣❡r❛t♦r ❆ ♦♥ ❍ ✐s ♠♦♥♦t♦♥❡ ✐❢ ✿ ∀ ① ✶ , ① ✷ ∈ ❉ ( ❆ ) , ( ❆ ( ① ✶ ) − ❆ ( ① ✷ ) , ① ✶ − ① ✷ ) ≥ ✵ .

  13. ❉❡✜♥✐t✐♦♥ ■t ✐s ❝❛❧❧❡❞ ♠❛①✐♠❛❧ ♠♦♥♦t♦♥❡ ✐❢ ✐t ✐s ♠❛①✐♠❛❧ ✐♥ t❤❡ s❡t ♦❢ ♠♦♥♦t♦♥❡ ♦♣❡r❛t♦rs✳ Pr♦♣♦s✐t✐♦♥ ▲❡t ϕ ❜❡ ❛ ❝♦♥✈❡① ❧s❝ ❢✉♥❝t✐♦♥ ♦♥ ❍ t❤❡♥ ∂ϕ ✐s ♠❛①✐♠❛❧ ♠♦♥♦t♦♥❡✳ ❘❡♠✐♥❞❡r ✿ ♣ ∈ ∂ϕ ( ① ) ✐❢ ❢♦r ❡✈❡r② ② ϕ ( ② ) − ϕ ( ① ) ≥ ♣ · ( ② − ① ) .

  14. ❚❤❡♦r❡♠ ❋♦r ❡✈❡r② ✉ ✵ ∈ ❉ ( ❆ ) ✱ t❤❡r❡ ❡①✐sts ❛ ✉♥✐q✉❡ ❢✉♥❝t✐♦♥ ✉ ( t ) ❢r♦♠ [ ✵ , + ∞ [ ✐♥ ❍ s✉❝❤ t❤❛t ◮ ✉ ( t ) ∈ ❉ ( ❆ ) ❢♦r ❡✈❡r② t > ✵ ◮ ✉ ( t ) ✐s ▲✐♣s❝❤✐t③ ♦♥ [ ✵ , + ∞ [ ✱ ✐✳❡ ❞✉ ❞t ∈ ▲ ∞ ( ✵ , + ∞ ; ❍ ) ✳ ◮ − ❞✉ ❞t ∈ ❆ ( ✉ ( t )) ❢♦r ❛✳❡✳ t✳ ◮ ✉ ( ✵ ) = ✉ ✵ ✳ ◮ ✐❢ ✉ ❛♥❞ ˆ ✉ ❛r❡ t✇♦ s♦❧✉t✐♦♥s t❤❡♥ | ✉ ( t ) − ˆ ✉ ( t ) | ≤ | ✉ ( ✵ ) − ˆ ✉ ( ✵ ) | ✳

  15. ❆♣♣❧✐❝❛t✐♦♥ t♦ ✜♥❞✐♥❣ s❛❞❞❧❡ ♣♦✐♥ts ❚❤❡♦r❡♠ ✭❘♦❝❦❛❢❡❧❧❛r ✻✽✮ ▲❡t ❑ ❜❡ ❛ ♣r♦♣❡r s❛❞❞❧❡ ❢✉♥❝t✐♦♥✳ ❆ss✉♠❡ t❤❛t ❑ ✐s ❧s❝ ✐♥ ② ❛♥❞ ✉s❝ ✐♥ ③ t❤❡♥ t❤❡ ❛ss♦❝✐❛t❡❞ ❆rr♦✇✲❍✉r✇✐❝③ ♦♣❡r❛t♦r ❚ ✐s ♠❛①✐♠❛❧ ♠♦♥♦t♦♥❡✳

  16. ❯♥❢♦rt✉♥❛t❡❧②✱ t❤✐s t❤❡♦r❡♠ ❞♦❡s♥✬t ❛♣♣❧② ❞✐r❡❝t❧② ✦ ■❞❡❛ ♦❢ t❤❡ ♣r♦♦❢ ▲❡t ③ ③ ∗ · ③ + ❑ ( ② , ③ ) ❍ ( ② , ③ ∗ ) = s✉♣ ❲❡ t❤❡♥ ❤❛✈❡ ✿ ▲❡♠♠❛ ❍ ✐s ❛ ❧s❝ ❝♦♥✈❡① ❢✉♥❝t✐♦♥ ❛♥❞ ( ② ∗ , ③ ∗ ) ∈ ❚ ( ② , ③ ) ⇔ ( ② ∗ , ③ ) ∈ ∂ ❍ ( ② , ③ ∗ )

  17. ■❞❡❛ ♦❢ t❤❡ ♣r♦♦❢ ▲❡t ③ ③ ∗ · ③ + ❑ ( ② , ③ ) ❍ ( ② , ③ ∗ ) = s✉♣ ❲❡ t❤❡♥ ❤❛✈❡ ✿ ▲❡♠♠❛ ❍ ✐s ❛ ❧s❝ ❝♦♥✈❡① ❢✉♥❝t✐♦♥ ❛♥❞ ( ② ∗ , ③ ∗ ) ∈ ❚ ( ② , ③ ) ⇔ ( ② ∗ , ③ ) ∈ ∂ ❍ ( ② , ③ ∗ ) ❯♥❢♦rt✉♥❛t❡❧②✱ t❤✐s t❤❡♦r❡♠ ❞♦❡s♥✬t ❛♣♣❧② ❞✐r❡❝t❧② ✦

  18. ❍ ✐s ❛ ❧s❝ ❝♦♥✈❡① ❢✉♥❝t✐♦♥ ✦ ❆♣♣❧✐❝❛t✐♦♥ t♦ t❤❡ ✐♥✐t✐❛❧ ♣r♦❜❧❡♠ ❲❡ r❡♠✐♥❞ t❤❛t ✇❡ ❧♦♦❦ ❢♦r ❛ s❛❞❞❧❡ ♣♦✐♥t ♦❢ � ❑ ( ✉ , ξ ) = − ✉ ❞✐✈ ξ + ● ( ✉ ) Ω ❲❡ t❤❡♥ ❧❡t � ❍ ( ✉ , ξ ∗ ) = � ξ, ξ ∗ � − ✉ ❞✐✈ ξ + ● ( ✉ ) s✉♣ | ξ | ∞ ≤ ✶ Ω � | ❉✉ + ξ ∗ | + ● ( ✉ ) = Ω

  19. ❆♣♣❧✐❝❛t✐♦♥ t♦ t❤❡ ✐♥✐t✐❛❧ ♣r♦❜❧❡♠ ❲❡ r❡♠✐♥❞ t❤❛t ✇❡ ❧♦♦❦ ❢♦r ❛ s❛❞❞❧❡ ♣♦✐♥t ♦❢ � ❑ ( ✉ , ξ ) = − ✉ ❞✐✈ ξ + ● ( ✉ ) Ω ❲❡ t❤❡♥ ❧❡t � ❍ ( ✉ , ξ ∗ ) = � ξ, ξ ∗ � − ✉ ❞✐✈ ξ + ● ( ✉ ) s✉♣ | ξ | ∞ ≤ ✶ Ω � | ❉✉ + ξ ∗ | + ● ( ✉ ) = Ω ❍ ✐s ❛ ❧s❝ ❝♦♥✈❡① ❢✉♥❝t✐♦♥ ✦

  20. ❲❡ ❝❛♥ t❤✉s ❞❡✜♥❡ t❤❡ ♠❛①✐♠❛❧ ♠♦♥♦t♦♥❡ ❚ ❜② ( ✉ ∗ , ξ ∗ ) ∈ ❚ ( ✉ , ξ ) ⇔ ( ✉ ∗ , ξ ) ∈ ∂ ❍ ( ✉ , ξ ∗ ) Pr♦❜❧❡♠ ✿ ❝♦♠♣✉t❡ ❚ ✳

  21. ❈❤❛r❛❝t❡r✐③❛t✐♦♥ ♦❢ ❚ Pr♦♣♦s✐t✐♦♥ ( ✉ ∗ , ξ ∗ ) ∈ ❚ ( ✉ , ξ ) ✐❢ ❛♥❞ ♦♥❧② ✐❢ ✿ ◮ ✉ ∈ ❇❱ ∩ ▲ ✷ ❛♥❞ ξ ∈ ❍ ✶ ✵ ( ❞✐✈ ) ✇✐t❤ | ξ | ∞ ≤ ✶ ✳ ◮ ✉ ∗ + ❞✐✈ ξ ∈ ∂ ● � � | ξ ∗ + ❉✉ | = � ξ ∗ , ξ � + [ ξ, ❉✉ ] ◮ Ω Ω

Recommend


More recommend