Physics Potential T HEIA of the Advanced Scintillation Detector Concept FroST Mar 19th 2016 Gabriel D. Orebi Gann UC Berkeley & LBNL 1
Physics Potential T HEIA of the Advanced Scintillation Detector Concept FroST Mar 19th 2016 Gabriel D. Orebi Gann UC Berkeley & LBNL 2
T ransformational Opportunity High-intensity, long-baseline beam aimed at deep underground lab World-class facility (soon to be) open for business! ν ν Investment in LBNF facility makes Fully-equipped, possible a broad program deep underground lab Should be fully exploited What other physics can we do here? 3
Bird’s - Eye View 1. The Advanced Scintillation Detector Concept 2. Physics Program • Low-energy physics • Rare-event searches • Long-baseline physics 3. Required R&D • Planned Demonstrations 4
1. Advanced Scintillation Detector Concept 5
The Precision of a Cherenkov Detector • High transparency: good light collection • Topological information • Particle identification (ring imaging) • Directionality Already demonstrated at 1–50 kt-scale (SNO, SuperK) • Solar neutrinos • Atmospheric neutrinos • Proton decay SNO D 2 O 6
The Power of a Scintillator Detector • Borexino High light yield: threshold, resolution Nature article • Sub-Cherenkov threshold detection • “Fast” timing at low threshold: coincidence tag • Particle identification • Can be made ultra clean Energy (keV) Already demonstrated at kt-scale (KL, Borexino) • Solar neutrinos L ow • Atmospheric neutrinos E nergy • Proton decay N eutrino • A stronomy Geoneutrinos • Supernova neutrinos • Diffuse supernova neutrino background Astropart. Phys. 35 (2011) 685-732 7
Advanced Scintillation Detector Concept ( ASDC ) • New technology with proven methodology House light-producing target inside large monolithic detector Novel, breakthrough target medium 8
Advanced Scintillation Detector Concept ( ASDC ) • New technology with proven methodology Yeh et al. Water-based liquid scintillator — Minfang House light-producing target inside large monolithic detector Novel, breakthrough target medium 9
Powerful Target Medium -- Tune to specific physics goals 10
Potential WbLS Capability • Neutrino Cherenkov topology • Directional information at low energy Electron • Particle ID at high energy (ring imaging) • Metal loading • High transparency (light collection) • High scintillation yield • Low threshold (sub Cherenkov t/h) detection • Neutrino Good energy & vertex resolution • Cher / scint ratio Electron • Event ID 11
Cherenkov/scintillation separation Methods to e nhance separation: water-based LS • fast Cherenkov Ultra-fast photon detection component (LAPPDs) slow scintillation • component Delay scintillation light • Optimize cocktail: scintillation fraction & spectrum (fluor) • Readout sensitivity arXiv:1409.5864 See Z. Wang talk for recent results 1.3ns TTS 0.1ns TTS 12
T HEIA : A realisation of the Advanced Scintillation Detector Concept ( ASDC ) • Large-scale detector (50-100 kton) 60m • WbLS target • Fast, high-efficiency photon detection with high coverage • 60m Deep u/ground (Pyhäsalmi, Homestake) • Isotope loading (Gd, Te, Li...) • Flexible ! Target, loading, configuration ➡ Broad physics program! Concept paper - arXiv:1409.5864 13 Detector image product of RAT -PAC
T HEIA : A realisation of the Advanced Scintillation Detector Concept ( ASDC ) • Large-scale detector (50-100 kton) 60m • WbLS target • Fast, high-efficiency photon detection with high coverage • 60m Deep u/ground (Pyhäsalmi, Homestake) • Isotope loading (Gd, Te, Li...) • Flexible ! Target, loading, configuration ➡ Broad physics program! Concept paper - arXiv:1409.5864 14 Detector image product of RAT -PAC
T HEIA : A realisation of the Advanced Scintillation Detector Concept ( ASDC ) • Large-scale detector (50-100 kton) 60m • WbLS target • Fast, high-efficiency photon detection with high coverage • 60m Deep u/ground (Pyhäsalmi, Homestake) • Isotope loading (Gd, Te, Li...) • Flexible ! Target, loading, configuration ➡ Broad physics program! Concept paper - arXiv:1409.5864 15 Detector image product of RAT -PAC
T HEIA : A realisation of the Advanced Scintillation Detector Concept ( ASDC ) • Large-scale detector (50-100 kton) 60m • WbLS target • Fast, high-efficiency photon detection with high coverage • 60m Deep u/ground (Pyhäsalmi, Homestake) • Isotope loading (Gd, Te, Li...) • Flexible ! Target, loading, configuration ➡ Broad physics program! Concept paper - arXiv:1409.5864 16 Detector image product of RAT -PAC
2. Physics Program 17
Physics Program Physics over 5 orders of magnitude 1. Neutrinoless double beta decay 2. Solar neutrinos (solar metallicity, luminosity) 3. Geo-neutrinos Nuclear Physics 4. Supernova burst neutrinos & DSNB 5. Source-based sterile searches High- 6. Nucleon decay Energy Physics 7. Long-baseline physics (mass hierarchy, CP violation) Remarkably, the same detector could show that Leptogenesis neutrinos and antineutrinos are the same, and that “neutrinos” and “antineutrinos” oscillate differently 18
Phys.Rev.Lett.110 : 062502 (2013); Builds on critical developments SNO+ white paper (in progress); by KLZ & SNO+ collaborations NLDBD Phys. Rev. D 87 no. 7 : 071301 (2013) [Chen, Biller, Manecki talks] Projected spectrum in SNO+: 5 years, 0.5% nat Te Asymmetric ROI (-0.5 - 1.5 σ ): Background dominated ROI by 8 B solar neutrinos! SNO+ collaboration 50kt detector 50% reduction of 8 B Particle ID / coincidence tags for int r/a R fit > 5.5m from PMTs (30kt fid) 0.5% loading ( nat Te) in 50kt ➾ 50t 130 Te ➾ 3 σ discovery for arXiv:1409.5864 m ββ =15meV in 10 yrs 19
Solar Neutrinos [Smy talk] 1996, W.C. Haxton: isotope loading for CC interaction (water) “Salty water Cherenkov detectors” W.C. Haxton PRL 76 (1996) 10 2000s, M. Yeh et al .: water-based liquid scintillator Nucl. Inst. & Meth. A660 51 (2011) CC detection in WbLS: high-precision spectral measurement to low energy! ⇒ search for new physics, solar metallicity, MSW effect Unprecedented low-energy statistics (ES) Spectral Sensitivity (CC) cos θ ⊙ < 0.4 30kt fiducial 1% 7 Li by mass Conservative 100 pe/MeV Similar to LENA — Astropart. Phys. 35 (2011) 685-732 Enabled by use of WbLS ( 7 Li, CC) + directionality from Cherenkov 20 arXiv:1409.5864
[Wurm, Gratta talks] Antineutrino Detection • Detect via IBD • High light yield allows enhanced n tag : 2.2 MeV γ from 1 H ‣ Suppress single-event background that limits water Cherenkov • Higher detection efficiency than Gd-H 2 O due to high scint. yield • Reduce NC background that limits LS detectors Geo Neutrinos DSNB • • Current total geo- ν exposure: Enhanced n tag < 10kt-yr (KL + Borexino) • Reduced NC background • T HEIA : l arge statistics in a • Most sensitive search to-date complementary geographical • Plus NaCl for ν signal location 21
Supernova Neutrinos 22
[Vagins talk] Supernova Burst in T HEIA • ~15k events for SN at 10 kpc (50 kt volume) • ~90% events are IBD Highly complementary to ν e -dominated LAr signal • Enhanced n tag via low threshold scintillation • Gd reduces n-cap time delay (200 μ s → 20 μ s) ⇒ reduce pile up • IBD tag allows extraction of additional signals • Bkg reduction for ES, doubling pointing accuracy • ID CC & monoE γ from NC ⇒ sensitive to burst T & subsequent ν mixing Early warning (PR value) 23
[Link, Svoboda talks] Sterile Neutrinos Nucleon Decay • • Large, deep, very clean Deploy 8 Li decay-at-rest (IsoDAR) • • Enhanced n tag 13MeV endpoint (above r/a) • • Sub-Cherenkov threshold Required detector response: detection 15% (E) & 50cm (R) • • Sensitive to several modes 5 yrs, 1kt (black) / 20kT fid. (blue) THEIA DUNE • Heavy-water based LS: 2n tag Sub-Chr t/h detection (reduce bkg in IBD searches) ⇒ Directly visible K + 24 Figs from arXiv:1409.5864
[Worcester talk] Long Baseline Program • Large-scale detector at Homestake, Production at FNAL in the LBNF beam • Complementary program to LArTPC (DUNE) • Build on WCD studies 1300km (arXiv:1204.2295) Ring-imaging of a water Cherenkov detector Particle ID from Cher/scint separation n and low-E hadron detection (low threshold) reduce wrong-sign component (nu vs anti-nu) reduce NC background by detecting π 0 →γγ Large size ⇾ sensitivity to 2nd oscn max 25 Images from arXiv:1204.2295
T HEIA Sensitivity Assumes 75% additional NC rejection (beyond SK-I) ~300 kt-MW-yr exposure (40kt LAr) Performance competitive with 40kt LAr TPC !! MH sensitivity for 50kt WbLS alone > 5 σ Study by E. T. Worcester using same 26 All figs from E. Worcester GLOBES package used for ELBNF
Physics Requirements Resolution Direction / Size (kt) Loading (light yield Cleanliness Depth Bag rings * coverage) Te, NLDBD 10 Nd… Solar 10 Li Geo 100 Gd DSNB 50 Gd Supernova 50 Gd Nucleon 100 decay Sterile 10 Long 50 baseline Critical Important Nice to have / not important 27
C. R&D Program 28
Recommend
More recommend