symmetry in shapes
play

Symmetry in Shapes Theory and Practice Niloy Mitra Maksim - PowerPoint PPT Presentation

Symmetry in Shapes Theory and Practice Niloy Mitra Maksim Ovsjanikov Mark Pauly Michael Wand Duygu Ceylan Symmetry in Shapes Theory and Practice Representations & Applications Michael Wand Saarland University /


  1. Symmetry in Shapes – Theory and Practice Niloy Mitra Maksim Ovsjanikov Mark Pauly Michael Wand Duygu Ceylan

  2. Symmetry in Shapes – Theory and Practice Representations & Applications Michael Wand Saarland University / MPI Informatik

  3. Representations & Applications

  4. Toy Example How many building blocks are these?

  5. Toy Example How many building blocks are these?

  6. What is Symmetry? Set of operations 𝑔 that leave object 𝑌 intact • 𝑔 𝑌 = 𝑌 Operations 𝐻 = 𝑔 𝑔 𝑌 = 𝑌 form a group 𝐻 encodes absent information

  7. Derived Properties Pairwise Correspondences Pairwise matches T

  8. Derived Properties Pairwise Correspondences Pairwise matches T Permutation Groups Exchangeable building blocks

  9. Derived Properties Pairwise Correspondences Pairwise matches T Permutation Groups Exchangeable building blocks Transformation Groups Regular transformations T T T T 𝐔 𝑗 |𝑗 ∈ ℤ

  10. Pairwise Matches T

  11. Input Data (Point Cloud) [data set: C. Brenner, IKG Univ. Hannover]

  12. Feature Representation [data set: C. Brenner, IKG Univ. Hannover]

  13. [data set: C. Brenner, IKG Univ. Hannover]

  14. Result [data set: C. Brenner, IKG Univ. Hannover]

  15. Symmetry Detection Partial Symmetry Detection • Yields pairwise partial correspondences • No symmetry groups (yet)

  16. Applications Pairwise correspondences • Non-local denoising • Symmetrization • Constrained editing Techniques • Correspondences transport information • Simplification of pairwise relations • Pairwise constraints as invariants

  17. Non-Local Denoising data MLS non-local [Gal et al. 2007]

  18. Non-Local Denoising MLS non-local 16 parts [Bokeloh et al. 2009] [data set: C. Brenner, University Hannover]

  19. Non-Local Denoising data non-local denoising [Zheng et al. 2010]

  20. Symmetrization [Mitra et al. 2007]

  21. Symmetry Preserving Editing

  22. iWires [Gal et al. 2009] Symmetry-based propagation of edits: additional references [Wang et al. 2011], [Zheng et al. 2011]

  23. Permutation & Building Blocks

  24. Example Scene

  25. Pairwise Correspondences

  26. Cutting at the Boundaries

  27. Microtiles

  28. 3D Result

  29. Properties General framework • Need point-wise equivalent relations Canonical, unique decomposition Every point of every piece is unique • Microtiles cannot have partial correspondences Microtiles reveal permutation groups

  30. Symmetry Factored Embedding [Lipman et al. 2010] Related Concept • Points that map together in once piece • Consistent orbits • Ignores transformation, point-wise orbits

  31. Inverse Procedural Modeling Rules from example geometry • Example model • Compute rules describing a class of similar models Output Input

  32. Inverse Procedural Modeling r-Similarity • Local neighborhoods match exemplar radius r radius r radius r output input

  33. Inverse Procedural Modeling [data set: G. Wolf]

  34. Theoretical Results All 𝑠 -similar objects are made out of (𝑠 − 𝜗) -microtiles • Unique construction • Connectivity same as in the example Implications • Canonical representation • Synthesis = solving jigsaw puzzles

  35. Shape Grammar

  36. Practice: Context Free Grammar b 1 Grammar: b 2 A  a 1 B C | a 2 D a 1 b 3 B  b 1 | b 2 | b 3 B C  c 1 | c 2 c 1 D  d 1 | d 2 C c 2 A d 1 a 2 D d 2

  37. [data sets: G. Wolf, Dosch 3D] Practical Results

  38. Fast Pairwise Matches T

  39. Quadratic Complexity? [data set: C. Brenner, IKG Univ. Hannover]

  40. Cliques / Equivalence Classes

  41. Scalable Symmetry Detection [data set: C. Brenner, IKG Univ. Hannover] Hannover scans: 128M points / 14GB detection: 23 min preproc.: 43 min [Kerber et al. 2013] [data set: C. Brenner, IKG Univ. Hannover]

  42. Regular Transformations

  43. Applications Symmetry: regularity (transformations) • Inverse procedural modeling • Regularity preserving editing • Shape recognition • Shape understanding Techniques • Transformation groups characterize shapes • Transformation group structure as invariants

  44. Inverse Procedural Modeling [Mitra et al. 2008] [Pauly et al. 2008]

  45. Regularity Aware Deformation [Bokeloh et al. 2011]

  46. Algebraic Shape Editing [Bokeloh et al. 2012]

  47. Shape Recognition [Kazhdan et al. 2004] [Podolak et al. 2006] [Thrun et al. 2005]

  48. Shape Understanding [Mehra et al. 2009] [Mitra et al. 2010]

  49. Conclusions

  50. Symmetry Principle • Absence of information • Invariance under operations Structure • Global Symmetry: transformation groups • Partial Symmetry: permutations of building blocks Detection • Pairwise matching (efficient pruning, segmentation) • Regular transformations: estimate generators • Intrinsic formulations

  51. Applications Different structural insights • Correspondence  Equivalence  Pairwise relations • Permutations  Building blocks  Shape grammar  Hierarchical encoding • Regularity  Structural invariant  Regularity relations  Different Applications

  52. Open Problems

  53. Open Problems Future Work & Open Problems • Detection  Scalability  Partial intrinsic symmetry detection  Approximate (deformable) symmetry • Modeling  More general, semantic symmetry  Equivalence of chairs, cars, houses? Avoid overfitting? • Theoretical framework  Approximate group theory?

Recommend


More recommend