SuperPlancherelsticexpialidocious supercharacter theory Examples 1 ( K , H ) = ( G / ∼ , Irr ( G )), trivial; 2 ( K , H ) = ( { 1 G , G \ { 1 G }} , { id , χ reg − id } ), trivial; 3 suppose A acts on G , φ : A → Aut ( G ) the superclasses are { φ ( A )([ g 1 ]) , . . . , φ ( A )([ g r ]) } but A acts also on Irr ( G ); call Ω 1 , . . . , Ω r the orbits, then the supercharacters are � χ (1) χ. χ ∈ Ω i Brauer This is a supercharacter theory
SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ):
SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2
SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2 1 0 1 0 1 4 0 3 1 5 2 0 3 6 0 1 0 0 0 4 3 1 0 0 3 0 h = , 1 0 4 0 1 0 0 1 0 1
SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2 1 0 1 0 1 4 0 3 1 0 · 0 ⋆ · · · · · · · · 1 5 2 0 3 6 0 1 ⋆ 1 0 0 0 4 3 1 0 0 0 · ⋆ 1 0 0 3 0 1 0 0 · 0 h = , 1 0 4 0 1 0 ⋆ · 1 0 0 1 0 0 1 0 1 0 1 1
SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2 1 0 1 0 1 4 0 3 1 0 · 0 ⋆ · · · · · · · · 1 5 2 0 3 6 0 1 ⋆ 1 0 0 0 4 3 1 0 0 0 · ⋆ 1 0 0 3 0 1 0 0 · 0 h = , 1 0 4 0 1 0 ⋆ · 1 0 0 1 0 0 1 0 1 0 1 1 π = 1 2 3 4 5 6 7 8
SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects;
SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula;
SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values;
SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values; 4 the algebra of superclass functions is isomorphic to the algebra of symmetric functions in noncommutative variables;
SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values; 4 the algebra of superclass functions is isomorphic to the algebra of symmetric functions in noncommutative variables; m 13 / 24 ( x 1 , x 2 , . . . ) = x 1 x 2 x 1 x 2 + x 2 x 1 x 2 x 1 + x 1 x 3 x 1 x 3 + x 3 x 1 x 3 x 1 + x 2 x 3 x 2 x 3 + x 3 x 2 x 3 x 2 + . . . � = x i x j x i x j i � = j
SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values; 4 the algebra of superclass functions is isomorphic to the algebra of symmetric functions in noncommutative variables; m 13 / 24 ( x 1 , x 2 , . . . ) = x 1 x 2 x 1 x 2 + x 2 x 1 x 2 x 1 + x 1 x 3 x 1 x 3 + x 3 x 1 x 3 x 1 + x 2 x 3 x 2 x 3 + x 3 x 2 x 3 x 2 + . . . � = x i x j x i x j i � = j 5 Nice decomposition of the supercharacter table.
SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ;
SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ; a ( π ) = | Arcs( π ) | = 4;
SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ; a ( π ) = | Arcs( π ) | = 4; dim( π ) = � j − i = 12; ( i , j ) ∈ Arcs( π )
SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ; a ( π ) = | Arcs( π ) | = 4; dim( π ) = � j − i = 12; ( i , j ) ∈ Arcs( π ) crs ( π ) = ♯ crossings of π = 1;
SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ;
SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ;
SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ; The superplancherel measure
SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ; The superplancherel measure χ (1) 2 SPl G ( χ ) = 1 | G | � χ, χ �
SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ; The superplancherel measure ( q − 1) a ( π ) · q 2 dim( π ) − 2 a ( π ) χ (1) 2 SPl G ( χ ) = 1 1 � χ, χ � = n ( n − 1) q crs ( π ) | G | q 2
SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space
SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space (some renormalization happens);
SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space (some renormalization happens); 2 interpret your statistics w.r.t. this new setting;
SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space (some renormalization happens); 2 interpret your statistics w.r.t. this new setting; 3 let n → ∞ ;
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit →
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → →
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → →
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → → 1 0 · 0 ⋆ · · · 1 ⋆ · · · · · 1 0 0 0 · ⋆ 1 0 0 · 0 1 0 ⋆ · 1 0 0 1 0 1
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → → 1 0 · 0 ⋆ · · · · · ⋆ 0 · 1 0 0 1 0 1 1 ⋆ · · · · · · · · · 1 0 ⋆ 1 0 0 0 · ⋆ · · 1 0 0 0 1 0 0 1 0 0 · 0 → 0 ⋆ · 1 0 ⋆ · · 1 0 0 · 1 ⋆ 1 0 1 0 1
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → → 1 1 0 · 0 ⋆ · · · · · ⋆ 0 · 1 0 0 1 0 1 1 ⋆ · · · · · · · · · 1 0 ⋆ 1 0 0 0 · ⋆ · · 1 0 0 0 1 0 0 1 0 0 · 0 → → 0 ⋆ · 1 0 ⋆ · · 1 0 0 · 1 ⋆ 1 0 1 0 1 0 1
SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → → 1 1 0 · 0 ⋆ · · · · · ⋆ 0 · 1 0 0 1 0 1 1 ⋆ · · · · · · · · · 1 0 ⋆ 1 0 0 0 · ⋆ · · 1 0 0 0 1 0 0 1 0 0 · 0 → → → ? 0 ⋆ · 1 0 ⋆ · · 1 0 0 · 1 ⋆ 1 0 1 0 1 0 1
SuperPlancherelsticexpialidocious supercharacter theory Our setting 1 ∆ = 0 1
SuperPlancherelsticexpialidocious supercharacter theory Our setting 1 measures µ on ∆ s.t. ∆ = Γ = � ∆ µ ≤ 1 ( subprobability ) µ has sub-uniform marginals 0 1
SuperPlancherelsticexpialidocious supercharacter theory Our setting 1 measures µ on ∆ s.t. ∆ = Γ = � ∆ µ ≤ 1 ( subprobability ) µ has sub-uniform marginals 0 1 1 d c 0 a b 1
SuperPlancherelsticexpialidocious supercharacter theory Our setting 1 measures µ on ∆ s.t. ∆ = Γ = � ∆ µ ≤ 1 ( subprobability ) µ has sub-uniform marginals 0 1 1 d � y =1 � x = b d µ = b − a UNIFORM c y =0 x = a 0 a b 1
SuperPlancherelsticexpialidocious supercharacter theory Our setting 1 measures µ on ∆ s.t. ∆ = Γ = � ∆ µ ≤ 1 ( subprobability ) µ has sub-uniform marginals 0 1 1 d � y =1 � x = b d µ = b − a UNIFORM c y =0 x = a � x =1 � y = d d µ ≤ d − c SUB-UNIFORM x =0 y = c 0 a b 1
SuperPlancherelsticexpialidocious supercharacter theory Theorem (DDS) There exists a measure Ω ∈ Γ such that µ π → Ω almost surely.
SuperPlancherelsticexpialidocious supercharacter theory Theorem (DDS) There exists a measure Ω ∈ Γ such that µ π → Ω almost surely.
SuperPlancherelsticexpialidocious supercharacter theory Theorem (DDS) There exists a measure Ω ∈ Γ such that µ π → Ω almost surely. n 1 2 3
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) π = 1 2 3 4 5 6 7 8
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 Each box has mass 1 n , there are a ( π ) boxes, ⇒ a ( π ) =
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 Each box has mass 1 n , there are a ( π ) boxes, ⇒ � a ( π ) = n d µ π ( x , y ) ∆
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) π = 1 2 3 4 5 6 7 8
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 � dim( π ) = j − i ( i , j ) ∈ Arcs( π )
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 � � j − i = n 2 dim( π ) = ( y − x ) d µ π ( x , y ) ∆ ( i , j ) ∈ Arcs( π )
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 � � j − i = n 2 dim( π ) = ( y − x ) d µ π ( x , y ) ∆ ( i , j ) ∈ Arcs( π ) y ∼ 1 x ∼ 1 nj ni each box has mass 1 n
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) π = 1 2 3 4 5 6 7 8
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 crs ( π ) = ♯ { ( i 1 , j 1 ) , ( i 2 , j 2 ) ∈ Arcs( π ) s.t. i 1 < i 2 < j 1 < j 2 }
SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 crs ( π ) = ♯ { ( i 1 , j 1 ) , ( i 2 , j 2 ) ∈ Arcs( π ) s.t. i 1 < i 2 < j 1 < j 2 } � = n 2 ∆ 2 1 [ x 1 < x 2 < y 1 < y 2 ] d µ π ( x 1 , y 1 ) d µ π ( x 2 , y 2 ) + O ( n )
SuperPlancherelsticexpialidocious supercharacter theory q 2 dim( π ) − 2 a ( π ) 1 SPl n ( χ π ) = ( q − 1) a ( π ) q crs ( π ) = n ( n − 1) q 2
SuperPlancherelsticexpialidocious supercharacter theory q 2 dim( π ) − 2 a ( π ) 1 SPl n ( χ π ) = ( q − 1) a ( π ) q crs ( π ) = n ( n − 1) q 2 � � − n 2 �� 2 + log( q − 1) 2 + n a ( π ) − 2 a ( π ) + 2 dim( π ) − crs ( π ) = exp log q log q
SuperPlancherelsticexpialidocious supercharacter theory q 2 dim( π ) − 2 a ( π ) 1 SPl n ( χ π ) = ( q − 1) a ( π ) q crs ( π ) = n ( n − 1) q 2 � � − n 2 �� 2 + log( q − 1) 2 + n a ( π ) − 2 a ( π ) + 2 dim( π ) − crs ( π ) = exp log q log q � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n )
SuperPlancherelsticexpialidocious supercharacter theory � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n )
SuperPlancherelsticexpialidocious supercharacter theory � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n ) H ( µ ) := 1 2 − 2 I dim ( µ ) + I crs ( µ )
SuperPlancherelsticexpialidocious supercharacter theory � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n ) H ( µ ) := 1 2 − 2 I dim ( µ ) + I crs ( µ ) IDEA Find Ω s.t. H (Ω) = 0 ( ⇒ Ω candidate limit shape)
SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t.
SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t. I dim ( φ ( µ )) ≥ I dim ( µ )
SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t. I dim ( φ ( µ )) ≥ I dim ( µ ) I dim ( φ ( µ )) = I dim ( µ ) ⇔ µ has uniform marginals
SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t. I dim ( φ ( µ )) ≥ I dim ( µ ) I dim ( φ ( µ )) = I dim ( µ ) ⇔ µ has uniform marginals �→ µ φ ( µ )
Recommend
More recommend