superfluid hydrodynamics thermal partition function and
play

Superfluid Hydrodynamics, Thermal Partition Function and Lifshitz - PowerPoint PPT Presentation

Superfluid Hydrodynamics, Thermal Partition Function and Lifshitz Scaling Crete Center for Theoretical Physics Shira Chapman, Carlos Hoyos, Yaron Oz arXiv: 1310.2247, 1402.2981 Tel Aviv University February 20, 2014 Outline Superfluids and


  1. Superfluid Hydrodynamics, Thermal Partition Function and Lifshitz Scaling Crete Center for Theoretical Physics Shira Chapman, Carlos Hoyos, Yaron Oz arXiv: 1310.2247, 1402.2981 Tel Aviv University February 20, 2014

  2. Outline ◮ Superfluids and Superconductors. ◮ Relativistic Superfluid Dynamics. ◮ Chiral Terms in Superfluids. ◮ Kubo Formulas From Equilibrium Partition Function. ◮ Lifshitz Scaling Symmetry. ◮ Quantum Critical Points. ◮ Experimental Implications.

  3. Superfluidity and Superconductivity ◮ Pyotr Leonidovich Kapitsa - 1938 1978 - Nobel prize for discovery of superfluidity in 4 He ◮ Liquifies at T ≈ 4 . 2 ◦ K ◮ At T ≈ 2 . 17 ◦ K - Second order phase transition.

  4. ◮ Phase diagram of 4 He ◮ Remains liquid at absolute zero ◮ Condensate of atoms in ground state - Collective mode

  5. ◮ The λ point ◮ Heat conductivity increase by a factor of 10 6 ◮ Large part of atoms in ground state - Condensate - collective mode

  6. The Two Fluid Picture ◮ Viscosity vs. no viscosity ◮ Effective picture - two fluid flows � v n , � v s ◮ Due to Landau

  7. ◮ Superfluid component carries no entropy

  8. Superconductivity ◮ Heike Kamerlingh Onnes - 1911 1913 - Nobel prize for liquifying helium ◮ Zero resistance to DC current. ◮ Meissner effect (1933). ◮ Condensation of Cooper pairs. ◮ Two fluid picture - paired electrons form superfluid.

  9. Relativistic Superfluids ◮ Spontaneous symmetry breaking ◮ S-wave superfluid - condensate - complex scalar operator ◮ Phase of scalar φ - Goldstone mode - participates in the hydrodynamics. ◮ Fluid variables: T - temperature, µ - chemical potential, u µ - normal fluid 4-velocity, ξ µ = − ∂ µ φ - Goldstone phase gradient, u µ s = − ξ µ /ξ - Superfluid velocity. ◮ Superconductors - broken gauge symmetry - ξ µ ≡ − ∂ µ φ + A µ .

  10. Relativistic Superfluids ◮ New thermodynamic parameters ξ µ . ◮ Thermodynamic relations: ε n + P = sT + q n µ dP = sdT + q n d µ + f 2 d ξ 2 ◮ Stress tensor and current: T µν = ε n u µ u ν + P ( η µν + u µ u ν ) + ε s u µ s u ν s + π µν J µ = q n u µ + q s u µ s + j µ diss ◮ Josephson relation: u µ ξ µ = µ + µ diss .

  11. ◮ Hydrodynamic equations - conservation law: ∂ µ T µν = F νµ J µ ∂ µ J µ = CE µ B µ ∂ µ ξ ν − ∂ ν ξ µ = F µν ◮ Electric field: E µ = F µν u ν ◮ Magnetic field: B µ = 1 2 ǫ µνρσ u ν F ρσ ◮ C - triangular anomaly of three currents. ◮ Goal: constrain expressions for π µν , j µ diss , µ diss .

  12. Chiral Effects in Superfluid ◮ Local second law - Constrain current and conductivities J µ = q n u µ + q s u µ s + σ E µ + B µ ( C µ + 2 Tg 1 ) + ω µ ( C µ 2 + 4 g 1 µ T − 2 g 2 T 2 ) + . . . π µν = ησ µν + ζ∂ µ u µ + . . . g 1 = g 1 ( T , µ, ξ 2 ); g 2 = g 2 ( T , µ, ξ 2 ). ◮ Vorticity: ω µ = ǫ µνρσ u ν ∂ ρ u σ ◮ Shear tensor: σ µν = P ρ ν ∂ ( ρ u σ ) − 1 µ P σ 3 P µν ∂ ρ u ρ . ◮ ◮ Comparison to normal fluid

  13. ◮ C - triangular anomaly of three currents. ◮ In the normal fluid g 2 integration constant - related to mixed chiral-gravitational anomaly. [Yarom: 1207.5824] � C β � ∂ µ J µ ∼ ǫ µνρσ 32 π 2 R α βµν R β 8 F µν F ρσ + . αρσ ◮ Numerical evidence that at T → 0 one restore the normal fluid values [Amado: 1401.5795] ◮ Chiral effects - 3 He , Neutron stars.

  14. Equilibrium Partition Function ◮ Alternative method to derive hydrodynamic current ◮ Minwalla et al. - 1203.3544, Yarom et al. - 1203.3556 ◮ Consider equilibrated fluid on a curved manifold with non-trivial gauge fields x ) dx i � 2 + g ij ( � ds 2 = − e 2 σ ( � x ) � x ) dx i dx j , dt + a i ( � x ) dx 0 + A i ( � x ) dx i , A = A 0 ( � ◮ KK invariant gauge field: A 0 ≡ A 0 + µ 0 , A i ≡ A i − A 0 a i , ◮ Local temperature T ( � x ) = T 0 e − σ ◮ Local chemical potential µ ( � x ) = A 0 e − σ

  15. Equilibrium Partition Function ◮ Build the most general equilibrium partition function [effective action] S = S 0 + S 1 , � d 3 x 1 T P ( T , µ, ˆ ζ 2 ) , S 0 = � d 3 x ˆ S 1 = ζ · ( g 1 ∂ × A + Tg 2 ∂ × a ) � µ 3 T ∂ × A + µ 2 � � d 3 x A · + C 6 T ∂ × a + . . . ◮ ˆ ζ ≡ − ∂ i φ + A i , transverse [spatial] part of goldstone field ◮ Differentiate with respect to the gauge field to obtain the current ◮ Advantage - algebraic rather then differential ◮ Disadvantage - only captures equilibrium properties

  16. Linear Response Theory ◮ Relates transport coefficients to retarded correlation function of stress tensors and currents in terms of Kubo formulas ◮ Allow for a microscopic calculation e.g. Feynmann diagrams ◮ Deriving Kubo formulas - normally requires to solve the the equations of motion for a particular source of perturbation ◮ Alternative shorter algebraic method - from variations of the equilibrium partition function ◮ Reproduces known Kubo formulas for various fluid cases ◮ New Kubo formulas for superfluids

  17. Results ◮ Kubo formulas - � µ i k � ζ − C � g 1 ( T , µ, ζ 2 ) = − lim � 4 Tk n ǫ ijn � J i ( k n ) J j ( − k n ) � ω =0 , 2 T k n → 0 ij � µ �� i − C � 2 � g 2 ( T , µ, ζ 2 ) = lim � � J i T 0 j � − µ � J i J j � � 2 T 2 k n ǫ ijn � � ω =0 2 T k n → 0 ij k � ζ ◮ Spatial superfluid velocity - new thermal parameter - ζ i . ◮ Similar role to chemical potential in the spatial direction. ◮ Substitution rules in propagators - q µ → ( i ω n + µ,� q + � ζ ). ◮ Holographic calculation also possible.

  18. Lifshitz Superfluids - Quantum Critical Points ◮ Anisotropic Weyl - Lifshitz scaling symmetry: t → Ω z t x i → Ω x i z - dynamical critical exponent ◮ Must be accompanied by broken boost invariance ◮ Phase transition at zero temperature ◮ Driven by quantum fluctuations ◮ Quantum tuning parameter [ B , doping, pressure] ◮ First and Second order transition ◮ Infinite correlation length - scale invariance ◮ Hydrodynamic regime - l c ≫ L ≫ l T

  19. Quantum Criticality ◮ Influence of quantum critical point felt way above T = 0. Strange Metal T SC g QCP ◮ Example: anti-ferromagnetic → heavy fermion metal transition. ◮ Strange metal behavior ρ ∼ T ( ∼ T 2 in normal metals) ◮ Characteristic of high T c superconductors in the non-superconducting regime.

  20. Hydrodynamics with broken boost invariance ◮ Under lorentz transformations δ L = T µν ω µν ω µν antisymmetric parameter of Lorentz transformation ◮ Asymmetric stress tensor in time direction. ◮ Assumption - fluid can be described using former variables. ◮ No need of external time vector [phonons] ◮ Fluid velocity in the local rest frame points in the time direction ◮ Antisymmetric part of stress tensor: T [ µν ] = u [ µ V ν ] A

  21. Constitutive relations ◮ Stress-tensor: T µν = ( ε n + p ) u µ u ν + p η µν + ε s u µ s + π ( µν ) + π [ µν ] s u ν . A ◮ Choice of frame - removing a redundancy by shift of thermal variables: u µ → u µ + δ u µ ; T → T + δ T ; µ → µ + δµ . ◮ Clark Putterman frame - no current corrections, j µ diss = 0 π µν u µ u ν = 0

  22. ◮ Decompose: π ( µν ) = ( Q µ u ν + Q ν u µ ) + Π P µν + Π µν , t where Π µν Π µν Q µ u µ = 0 , t u ν = 0 , t P µν = 0 . Q µ represent the heat flow.

  23. Entropy Increase ◮ Entropy current: s = su µ − u ν T π µν + f T µ diss ζ µ . J µ ◮ Entropy production rate s = − [Π( ∂ µ u µ ) + Π µν t σ µν ] � a µ + P µν ∂ ν T � − Q µ ∂ µ J µ T T T � f ζ ν � � � − V A µ a µ − P µν ∂ ν T + µ diss P µν ∂ µ , 2 T T T ◮ Has to be positive sum of quadratic forms. ◮ Constraint dissipative corrections: Π µν t , Π , Q µ , V A µ , µ diss ◮ New vector - acceleration a µ ≡ u ν ∂ ν u µ . Two projections - in the direction and in the transverse direction to the superfluid velocity

  24. ◮ Number of transport terms in a superfluid T − preserving T − breaking non − Lifshitz 14 7 Lifshitz 22 13 ◮ More detailed results in the NR limit ◮ Only included parity preserving effects

  25. The non-relativistic limit ◮ Fluid variables: ◮ ρ n , ρ s - mass densities, ◮ � v n ,� v s - velocities, ◮ � ω = � v s − � v n - counterflow w = δ ij − w i w j ◮ projector P ij . w 2 ◮ expansion in powers of c: ◮ Expand thermal parameters: ◮ u µ = (1 , � v n c ) ◮ ξ µ = − c (1 , � v s c ) ◮ µ rel = c + 1 c ( µ + ω 2 / 2) v 2 ◮ ǫ n = ρ n c 2 + U n − ρ n n 2 ◮ Expand constitutive relations 1 π µν = � c n π µν ( n ) n

  26. ◮ equations of motion: ◮ mass conservation: ∂ t ( ρ n + ρ s ) + ∂ i ( ρ n v i n + ρ s v i s ) = 0 ◮ Navier-Stokes: s ) + ∂ i p + ν i = 0 ∂ t ( ρ n v i n + ρ s v i s ) + ∂ k ( ρ n v i n v k n + ρ s v i s v k ◮ Energy conservation: ∂ t E + ∂ i [ Q i + Q ′ i ] + ν e = 0

Recommend


More recommend