structural biology of carbohydrate degrading enzymes that
play

Structural Biology of Carbohydrate-Degrading Enzymes that Contribute - PowerPoint PPT Presentation

Workshop Argentina-Japan Bioscience and Biotechnology for the Promotion of Agriculture and Food Production - August 3 rd to 7 th 2009 - Buenos Aires Structural Biology of Carbohydrate-Degrading Enzymes that Contribute to Biotechnology


  1. Workshop Argentina-Japan “Bioscience and Biotechnology for the Promotion of Agriculture and Food Production” - August 3 rd to 7 th 2009 - Buenos Aires Structural Biology of Carbohydrate-Degrading Enzymes that Contribute to Biotechnology Shinya FUSHINOBU The University of Tokyo

  2. Diversity of carbohydrates • Function – Energy store (starch etc.) – Structural materials ( cellulose, chitin etc. ) – Information molecules ( glycoconjugates ) • Structure – Building block sugars (Pyranose/Furanose, Aldose/Ketose, stereoisomers etc.) – Bonds ( α / β anomers, 1,1; 1,2; 1,3; 1,4; 1,6 etc.) – Degree of polymerization (1, 2, 3, … 10 … 100 … and branches) Hexose-based sugars Deoxysugar Pentose OH HO OH OH OH OH OH OH O O HO O O HO HO OH HO OH HO O OH OH H 3 C HO HO 糖鎖を構成する主要な単糖 OH OH OH OH Xyl Glc Man Gal L-Fuc HO OH Aminosugars OH O HO O OH HO OH HO NH NH C C O CH O CH 3 3 GalNAc GlcNAc Acidic sugars CO O - COO - HO O H HO H H HO OH OH HO O H HO H OH H HN OH C=O H H GlcA CH 3 NeuAc

  3. Structures of “Amylases” ( β / α ) 8 barrel ( α / α ) 6 barrel GH15 GH14 GH13 A. awamori Glucoamylase G. max β -Amylase A. oryzae Taka-amylase

  4. Structures of “Cellulases” ( β / α ) 8 barrel ( β / α ) 7 barrel GH5 GH6 GH1 B. agaradhaerens T. reesei P. crysosporium endo- β 1,4-glucanase (Cel5A) CBH II (Cel6A) β -glucosidase β -jelly roll ( α / α ) 6 barrel GH7 GH7 GH8 T. reesei T. reesei C. thermocellum endo- β 1,4-glucanase (CelA) CBH I (Cel7A) EG I (Cel7B)

  5. General reaction mechanisms of glycoside hydrolases Acid/base catalyst ~ 5.5 Å Nuceophile Retaining (double displacement) mechanism General acid 6.5 ~ 9.5 Å General base Inverting (single displacement) mechanism McCarter & Withers, Curr. Opin. Struct. BIol. 4 , 885-892, 1994

  6. How carbohydrate-acting enzymes evolved? • The 3D structural scaffolds (folds) of Glycoside Hydrolases varies – Multiple origins! • Protein folds are highly conserved during molecular evolution – Structure determination gives insights their liniages • Sugar binding sites are prone to change • Specificities for α - or β -bonds, and the reaction mechanisms (retaining/inverting, hydrolase/phosphorylase) can also change?

  7. CAZy: Carbohydrate-Active enZYmes

  8. CAZy: Carbohydrate-Active enZYmes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 (at July, 2009) 3D available 3D unknown Class Catalytic activity Max. Family No. Deleted Families GH 21, 40, 41, 60, EC 3.2.1.* and EC 2.4.*.* 115 69, 91 (Glycoside Hydrolase) GT EC 2.4.*.* 91 36 (Glycosyltransferase) PL EC 4.2.2.* 21 - (Polysaccharide Lyase) CE EC 3.1.1.* 16 - (Carbohydrate Esterase) CBM Not Enzyme 55 7 (Carbohydrate-Binding Module) http://www.cazy.org/

  9. CAZypedia

  10. α - and β - glycosidases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 α -glycosidases β -glycosidases Mixed (axial) (equatorial) Retaining and Inverting glycosidases 1 2 3 4* 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109* 110 111 112 113 114 115 Retaining Inverting Mixed Unknown *NAD + -dependent

  11. Fold diversity of GH families 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 Lysozyme-like ( β / α ) 8 barrel ( α / α ) 6 barrel 6-fold β -propeller β -jelly roll β -helix ( β / α ) 7 barrel 5-fold β -propeller α + β IG-like 7-fold β -propeller Others Unknown

  12. GH Clans GH-A: ( β / α ) 8 1 2 5 10 17 GH-J: 5-fold β -propeller 32 68 26 30 35 39 42 50 51 GH-K: ( β / α ) 8 18 20 53 59 72 79 86 GH-L: ( α / α ) 6 15 65 GH-B: β -jelly roll 7 16 GH-M: ( α / α ) 6 8 48 GH-C: β -jelly roll 11 12 GH-N: β -helix 28 49 GH-D: ( β / α ) 8 27 31 36 GH-E: 6-fold β -propeller 33 34 83 GH-F: 5-fold β -propeller 43 62 GH-G: - 37 63 GH-H: ( β / α ) 8 13 70 77 GH-I: ( α + β ) 24 46 80

  13. Possible GH Lineages GH-A 1 2 5 10 17 ( β / α ) 8 26 30 35 39 42 50 6 51 53 59 72 79 86 ( β / α ) (8) ( β / α ) 7 38 57 14 47 ( β / α ) 5 ( β ) 3 25 112 56 GH-D 27 31 36 GH-L 15 65 ( α / α ) (6) ( α / α ) 6 94 GH-H 13 70 77 37 63 78 92 95 GH-K 18 20 85 GH-M 8 48 3 29 44 67 89 9 GH-F 43 62 5-fold β -propeller GH-J 32 68 6-fold GH-E 33 34 83 7-fold 74 58 •Increase and decrease of repeating units β -jelly roll ( α + β ) Etc. •Similar structure with β -helix different mechanism Lysozyme-like

  14. Structures of CAZymes determined by our group A. kawachii P. chrysosporium P. chrysosporium B. halodurans C. stercorarium α -L-arabino- A. kawachii T. thermophilus Lam55A β -glucosidase 1A “Rex” xylanase B furanosidase xylanase C β -galactosidase GH54 + GH1 GH10 GH11 GH42 GH8 GH55 CBM42 V. proteolyticus B. longum T. litoralis T. reesei B. longum Chitobiose GNB/LNB 4- α -glucano- glucuronan endo- α phosphorylase phosphorylase transferase lyase C. gilvus Cellobiose phosphorylase GH101 GH112 PL20 GH57 GT36 -> GH94 … and more!

  15. Enzymatic production of prebiotic oligosaccharide and its structural basis

  16. Bifidobacteria Gram-positive intestinal • anaerobic bacteria Rapidly colonize in • breast-fed infants’ intestine Beneficial to human • health as “probiotics” Bifidobacterium longum Prevents infection of (Mark Schell, MicorbeWiki) • pathogenic bacteria and diarrhea

  17. Unique galactose metabolism of Bifidobacteria Authentic galactose pathway (Leloir pathway) UDP-Glc 4-epimerase ( galE ) Aldose 1-epimerase Galactokinase ( galM ) ( galK ) UDP-Glc UDP-Gal β -Gal α -Gal Gal 1-P Glc 1-P Luis Leloir ATP ADP UDP-Glc: Hex 1-P uridiryltransferase ( galT ) Nobel Prize 1970 Bifidobacterial galactose pathway (GNB/LNB pathway) UDP-Glc 4-epimerase (BL1644) GNB/LNB phosphorylase (BL1641) UDP-Glc UDP-Gal GNB (Gal- β 1,3-GalNAc) Gal 1-P Glc 1-P LNB (Gal- β 1,3-GlcNAc) GlcNAc/ Pi UDP-Glc: Hex 1-P uridiryltransferase (BL1643) GalNAc Gal 1-P is directly produced from GNB/LNB by phosphorylase without ATP Kitaoka, M. et al. Appl. Envron. Microbiol. 71 , 3158-3162, 2005

  18. Human Milk Oligosaccharides contain LNB ✤ Oligosaccharides in human milk other than lactose (Gal- β 1,4-Glc) ✤ Include more than 100 kinds of molecules (> trisaccharides) ✤ Predominantly contain LNB as a building block: Exclusive feature of Human Milk (Urashima et al., 2007) ✤ LNB-containing oligosaccharides are “Bifidus Factor” LNB Lactose N -acetyllactosamine Sialic acid Fucose

  19. The GNB/LNB pathway of Bifidobacteria Glycolysis/ Mucin O -glycans Amino sugar metabolism GNB/LNB-specific (Intestinal Mucosa) Transporter (BL1638-1640) Phosphate GNB Gal1P + Endo- α -GalNAc-ase GlcNAc/ GalNAc GNB/LNB Solute- LNB phosphorylase Binding (BL1641) Fucosidase, Sialidase Protein Human Milk Lacto- N -biosidase N -Acetylhexosamine 1-kinase (BL1642) (BL1638) Oligosaccharides Gal-1P uridylyltransferase (BL1643) UDP-glucose 4-epimerase (BL1644) BL1638 BL1639 BL1640 BL1641 BL1642 BL1643 BL1644 Crystallography Enzymology LNB production and effect as prebiotics •Wada ActaF 63 , 751, 2007 •Kitaoka AEM , 2005 •Nakajima AMB , 2008 •Nishimoto BBB , 2007 •Ashida Glycobiol. , 2008 •Suzuki JBC 283 , 13165, 2007 •Nishimoto BBB , 2007 •Wada AEM , 2008 •Nakajima JBC , 2009 •Hidaka JBC 284 , 7273, 2009 •Kiyohara BBB , 2009 •Nakajima AEM , 2008 •Ashida Glycobiol. , 2009 •Suzuki J. Biochem. , in press

  20. Large scale preparation of LNB Sucrose + Pi Glc1 P + Fru SP (BL0536) Glc1 P + UDP-Gal UDP-Glc + Gal1 P GalT (BL1211) UDP-Glc UDP-Gal GalE (BL1644) Gal1 P + GlcNAc LNB + Pi GLNBP (BL1641) Suc + GlcNAc LNB + Fru (Cat. UDP-Glc, Pi) SP GalT GalE GalT LNBP Suc Glc 1 P UDP-Glc UDP-Gal Gal 1 P LNB Fru GlcNAc (UMP unit) Pi 1.4 kg LNB, Purity >99% (Yield 73%) + Catalog price of LNB = $369/25 mg $20,664,000/1.4 kg Nishimoto & Kitaoka BBB , 71 , 2101, 2007

Recommend


More recommend