strongly interacting
play

Strongly Interacting Massive Particles with Yonit Hochberg and - PowerPoint PPT Presentation

+ Strongly Interacting Massive Particles with Yonit Hochberg and Eric Kuflik


  1. 東京大学 シンボルマーク+ロゴ タ イプ 新東大ブルー 基本形 漢字のみ Strongly Interacting 英語のみ Massive Particles with Yonit Hochberg and Eric Kuflik 秋の学校「理論と観測から迫るダークマターの正体とその分布」 国立天文台 Nov 9, 2016 Hitoshi Murayama (Berkeley, Kavli IPMU) arXiv:1411.3727 w/ Tomer Volansky Jay Wacker, arXiv:1512.07917, many more papers to come

  2. 東京大学 シンボルマーク+ロゴ タ イプ 新東大ブルー 暗黒物質 ゲテモノ候補 秋の学校「理論と観測から迫るダークマターの正体とその分布」 基本形 漢字のみ 英語のみ 国立天文台 Nov 9, 2016 Hitoshi Murayama (Berkeley, Kavli IPMU)

  3. http://nyti.ms/2ezzlp2 President » Senate » Key 218266 States Dem. Rep. Fla. Mich. N.H. N.C. Pa. Wis. Va. Ariz. Colo. Minn. 47 51 Electoral votes 29 16 4 15 20 10 13 11 9 10 48% 46% 50% 45% 48% 47% 48% 47% 48% 47% Clinton 270 to win Clinton Trump House » Dem. Rep. 49% 47% 51% 49% 49% 45% 50% 45% 45% 48% Trump Full Results 2:33 AM ET 174 234 Reporting 100% 94% 91% 100% 99% 99% 98% 83% 76% 92% Results Live Presidential Forecast ELECTION 2016 Live Coverage Live Briefing Presidential Election Live: Donald Trump Nears Victory, but Hillary Clinton Refuses to Concede

  4. cluster of galaxies Abell 2218 2.1B lyrs

  5. assumption • a random density fluctuations ~O(10 –5 ) more-or-less scale invariant P (k) ∝ k ns –1 • starts acoustic Planck Collaboration: Cosmological parameters oscillation, amplified by gravitational attraction • “knows” about everything between 0< z <1300 δ T / T = a lm Y lm (2l+1) c lm = Σ m a lm* a lm

  6. dark matter Ω m changes overall power

  7. HSC performance HSC: riz in 2.5 hours COSMOS HST (640 orbits: ~500hrs) Conducting a major survey for 300 nights! First data release Feb 2017 10

  8. dark matter map ~20 square degrees (2 hours of observation) 11

  9. Now move forward to writing the 1 st -year science papers with about 170 sq. degs. (full color, full depth, typical seeing ~0.6”, so far 100 nights) cf. DES ~1”

  10. Cluster weak lensing Projected mass density • ~170 sq. degrees • About 1000 clusters used preliminary Radius of background galaxies from each cluster center

  11. Dim Stars? Black Holes? 0.6 fraction in the galaxy halo Search for MACHOs EROS collaboration astro-ph/0607207 (Massive Compact Halo Objects) 0.4 f = �฀�฀���฀�� −7 MACHO Large Magellanic Cloud 95% cl 0.2 EROS−2 + EROS−1 upper limit (95% cl) 0.0 2 −8 −6 −4 −2 0 logM= 2log( t E /70d) Not enough of them!

  12. Mass Limits “Uncertainty Principle” • Clumps to form structure • imagine Mm V = G N r � 2 • “Bohr radius”: r B = G N Mm 2 • too small m ⇒ won’t “fit” in a galaxy! • m >10 − 22 eV “uncertainty principle” bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

  13. sociology • We used to think • need to solve problems with the SM • hierarchy problem, strong CP , etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim • probably because dark matter problem was not so established in 80’s

  14. 10 –30 10 –20 10 –10 mass 10 10 10 20 10 30 10 40 10 50 10 0 [GeV] to fluffy no good idea mirolensing etc 10 –10 mass 10 0 10 6 [GeV] WIMP QCD axion

  15. Limits m a = m π f π /f a [eV]

  16. ADMX Use the effective coupling L e ff ∼ e 2 a E · ~ ~ B 4 ⇡ 2 f a

  17. Cosmic Axion Spin Precession m u µ · ~ s n · ~ H e ff ( t ) = − ~ sin( m a t ) × ~ B − E m 2 ~ B ext SQUID const pickup ~ M loop resonance @ µ B = m a 4 ~ E ∗ frequency � Hz � 10 2 10 4 10 6 10 8 10 10 10 12 10 14 Static EDM 10 � 5 Budker et al SN 1987A arXiv:1306.6089 10 � 10 g d � GeV � 2 � ADMX QCD Axion 10 � 15 10 � 20 10 � 14 10 � 12 10 � 10 10 � 8 10 � 6 10 � 4 10 � 2 10 0 mass � eV �

  18. = 4 . 4 × 10 − 10 GeV n DM WIMP Miracle s m DM DM SM h σ 2 → 2 v i ⇡ α 2 m 2 α ≈ 10 − 2 m ≈ 300 GeV DM SM “weak” coupling correct abundance “weak” mass scale Miracle 2

  19. -36 10 ] ] s 2 2 CMS u -Nucleon Cross Section [cm C -Nucleon Cross Section [cm p D e -37 M r 10 C S direct detection D l i M t e S -38 10 -1 CMS, 90% CL, 7 TeV, 5.0 fb -39 10 -1 CMS, 90% CL, 8 TeV, 19.7 fb µ ( χ γ χ )( q γ q) CoGeNT 2011 -40 10 µ 2 Λ Vector -41 SIMPLE 2012 10 -42 10 COUPP 2012 LHC -43 CDMS II 10 X a 2 (G ) -1 χ χ α CMS, 90% CL, 8 TeV, 19.7 fb s µ ν E -44 10 XENON100 3 N 4 Λ LUX 2013 O χ -45 Scalar χ 10 N Spin Independent -46 1 10 t 3 2 10 10 1 10 M [GeV] χ e + γ from dSph

  20. ~ ~ ~ ~ ~ ~ ∼ ∼ ∼ ∼ 0 0 0 0 Status: ICHEP 2016 t t production, t b f f' / t c / t W b / t t → χ → χ → χ → χ 1 1 1 1 1 1 1 1 1 1 600 [GeV] ATLAS Preliminary s =13 TeV ~ ~ -1 ∼ 0 ∼ 0 t0L 13.2 fb [CONF-2016-077] t t / t W b → χ → χ 1 1 1 1 ~ 0 1 ∼ 0 -1 ∼ χ t1L 13.2 fb [CONF-2016-050] t t → χ 500 m 1 1 ~ ∼ 0 -1 t W b → χ t2L 13.3 fb [CONF-2016-076] 1 1 ~ ∼ 0 -1 MJ 3.2 fb [1604.07773] t c → χ 1 1 -1 Run 1 [1506.08616] s =8 TeV, 20 fb 400 Observed limits Expected limits All limits at 95% CL 300 W + m ) < m t ) < 0 0 ) < m b ∼ χ 0 1 ∼ ~ , χ 1 t , m( 1 ~ 0 t ∼ m( 1 χ 1 ~ , ∆ t m( 1 ∆ 200 ∼ 0 ∆ c χ 1 ∼ 0 b f f' χ 1 8 TeV 13 TeV 100 LQ1(ej) x2 LQ1(ej)+LQ1( ν j) β =0.5 coloron(jj) x2 ∼ 0 W b LQ2( μ j) x2 χ 1 LQ2( μ j)+LQ2( ν j) β =0.5 Multijet coloron(4j) x2 Leptoquarks LQ3( τ b) x2 LQ3( ν b) x2 Resonances gluino(3j) x2 LQ3( τ t) x2 0 LQ3(vt) x2 gluino(jjb) x2 Single LQ1 ( λ =1) 200 300 400 500 600 700 800 900 Single LQ2 ( λ =1) TeV 0 1 2 3 4 0 1 2 3 4 TeV m [GeV] ADD ( γ +MET), nED=4, MD ~ RS Gravitons t ADD (jj), nED=4, MS RS1(jj), k=0.1 1 QBH, nED=6, MD=4 TeV RS1( γγ ), k=0.1 NR BH, nED=6, MD=4 TeV RS1(ee, μμ ), k=0.1 String Scale (jj) 0 1 2 3 4 TeV no sign of QBH (jj), nED=4, MD=4 TeV CMS Preliminary ADD (j+MET), nED=4, MD Large Extra ADD (ee, μμ ), nED=4, MS Dimensions Heavy Gauge ADD ( γγ ), nED=4, MS new physics SSM Z'( ττ ) Jet Extinction Scale Bosons SSM Z'(jj) 0 1 2 3 4 5 6 7 8 9 10 SSM Z'(ee)+Z'(µµ) TeV SSM W'(jj) dijets, Λ + LL/RR that explains SSM W'(lv) dijets, Λ - LL/RR SSM Z'(bb) dimuons, Λ + LLIM 0 1 2 3 4 5 TeV dimuons, Λ - LLIM dielectrons, Λ + LLIM Excited naturalness! dielectrons, Λ - LLIM Fermions e* (M= Λ ) single e, Λ HnCM Compositeness μ * (M= Λ ) single μ , Λ HnCM q* (qg) inclusive jets, Λ + q* (q γ ) f=1 b* inclusive jets, Λ - 0 1 2 3 4 5 6 TeV 0 1 2 3 4 5 6 7 8 9 101112131415161718192021 TeV CMS Exotica Physics Group Summary – ICHEP , 2016 !

  21. Beginning of Universe 1,000,000,001 1,000,000,001 anti-matter matter

  22. fraction of second later 1 1,000,000,002 1,000,000,000 anti-matter matter turned a billionth of anti-matter to matter

  23. Universe Now 2 us Gelmini, Hall, Lin (1987) Kaplan, Luty, Zurek, 0901.4117 anti-matter dark matter dark This must be how we survived the Big Bang! they

  24. Two ways η DM = η b =0 η DM = η b =0 η DM + η b ≠ 0 η DM + η b =0, η DM =– η b ≠ 0 η DM ≠ 0 η DM ≠ 0 η b ≠ 0 η b ≠ 0

  25. Asymmetric Dark Matter Ω DM n b η b m DM = m p ≈ 6 GeV × Ω b n DM η DM • Does this explain the “similarity” of dark matter and baryons? m p ≈ Λ e − 8 π 2 /g 2 s ( Λ ) b 0 • Need to come up with a dynamical origin of the dark matter mass linked to the QCD coupling

  26. 10 –30 10 –20 10 –10 mass 10 10 10 20 10 30 10 40 10 50 10 0 [GeV] to fluffy no good idea mirolensing etc 10 –10 mass 10 0 10 6 [GeV] WIMP asymmetric DM QCD axion

  27. Topological defects • common interest among AMO, condensed matter, particle physics, algebraic geometry • symmetry breaking G → H • coset space G / H describes vacua • can the space be mapped non-trivially into the coset space? • π 0 ( G / H ) ≠ 0: domain walls Abrikosov • π 1 ( G / H ) ≠ 0: string (vortex) 2003 Nobel • π 2 ( G / H ) ≠ 0: monopole • π 3 ( G / H ) ≠ 0: skyrmion

  28. Kibble mechanism • Kibble (1976) argued that phase transitions in expanding universe produce defects • second-order phase transitions have infinite correlation length ξ ∝ | T - T c | - ν • Therefore, all regions of causally connected space choose the same vacuum on G / H • However, there is a finite horizon size H -1 ≈ M Pl / T 2 • Kibble: about one defect per horizon

  29. Time scale • We know that we need to cool the material slowly to grow a bigger crystal (e.g. clear ice in the freezer) • How does time scale come into the discussion? • It takes time for things to line up! relaxation • quench ed phase transition • general discussion by Zurek (1985) “Cosmological Experiments in Superfluid Helium?”

Recommend


More recommend