東京大学 シンボルマーク+ロゴ タ イプ 新東大ブルー 基本形 漢字のみ Strongly Interacting 英語のみ Massive Particles with Yonit Hochberg and Eric Kuflik 秋の学校「理論と観測から迫るダークマターの正体とその分布」 国立天文台 Nov 9, 2016 Hitoshi Murayama (Berkeley, Kavli IPMU) arXiv:1411.3727 w/ Tomer Volansky Jay Wacker, arXiv:1512.07917, many more papers to come
東京大学 シンボルマーク+ロゴ タ イプ 新東大ブルー 暗黒物質 ゲテモノ候補 秋の学校「理論と観測から迫るダークマターの正体とその分布」 基本形 漢字のみ 英語のみ 国立天文台 Nov 9, 2016 Hitoshi Murayama (Berkeley, Kavli IPMU)
http://nyti.ms/2ezzlp2 President » Senate » Key 218266 States Dem. Rep. Fla. Mich. N.H. N.C. Pa. Wis. Va. Ariz. Colo. Minn. 47 51 Electoral votes 29 16 4 15 20 10 13 11 9 10 48% 46% 50% 45% 48% 47% 48% 47% 48% 47% Clinton 270 to win Clinton Trump House » Dem. Rep. 49% 47% 51% 49% 49% 45% 50% 45% 45% 48% Trump Full Results 2:33 AM ET 174 234 Reporting 100% 94% 91% 100% 99% 99% 98% 83% 76% 92% Results Live Presidential Forecast ELECTION 2016 Live Coverage Live Briefing Presidential Election Live: Donald Trump Nears Victory, but Hillary Clinton Refuses to Concede
cluster of galaxies Abell 2218 2.1B lyrs
assumption • a random density fluctuations ~O(10 –5 ) more-or-less scale invariant P (k) ∝ k ns –1 • starts acoustic Planck Collaboration: Cosmological parameters oscillation, amplified by gravitational attraction • “knows” about everything between 0< z <1300 δ T / T = a lm Y lm (2l+1) c lm = Σ m a lm* a lm
dark matter Ω m changes overall power
HSC performance HSC: riz in 2.5 hours COSMOS HST (640 orbits: ~500hrs) Conducting a major survey for 300 nights! First data release Feb 2017 10
dark matter map ~20 square degrees (2 hours of observation) 11
Now move forward to writing the 1 st -year science papers with about 170 sq. degs. (full color, full depth, typical seeing ~0.6”, so far 100 nights) cf. DES ~1”
Cluster weak lensing Projected mass density • ~170 sq. degrees • About 1000 clusters used preliminary Radius of background galaxies from each cluster center
Dim Stars? Black Holes? 0.6 fraction in the galaxy halo Search for MACHOs EROS collaboration astro-ph/0607207 (Massive Compact Halo Objects) 0.4 f = ������� −7 MACHO Large Magellanic Cloud 95% cl 0.2 EROS−2 + EROS−1 upper limit (95% cl) 0.0 2 −8 −6 −4 −2 0 logM= 2log( t E /70d) Not enough of them!
Mass Limits “Uncertainty Principle” • Clumps to form structure • imagine Mm V = G N r � 2 • “Bohr radius”: r B = G N Mm 2 • too small m ⇒ won’t “fit” in a galaxy! • m >10 − 22 eV “uncertainty principle” bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)
sociology • We used to think • need to solve problems with the SM • hierarchy problem, strong CP , etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim • probably because dark matter problem was not so established in 80’s
10 –30 10 –20 10 –10 mass 10 10 10 20 10 30 10 40 10 50 10 0 [GeV] to fluffy no good idea mirolensing etc 10 –10 mass 10 0 10 6 [GeV] WIMP QCD axion
Limits m a = m π f π /f a [eV]
ADMX Use the effective coupling L e ff ∼ e 2 a E · ~ ~ B 4 ⇡ 2 f a
Cosmic Axion Spin Precession m u µ · ~ s n · ~ H e ff ( t ) = − ~ sin( m a t ) × ~ B − E m 2 ~ B ext SQUID const pickup ~ M loop resonance @ µ B = m a 4 ~ E ∗ frequency � Hz � 10 2 10 4 10 6 10 8 10 10 10 12 10 14 Static EDM 10 � 5 Budker et al SN 1987A arXiv:1306.6089 10 � 10 g d � GeV � 2 � ADMX QCD Axion 10 � 15 10 � 20 10 � 14 10 � 12 10 � 10 10 � 8 10 � 6 10 � 4 10 � 2 10 0 mass � eV �
= 4 . 4 × 10 − 10 GeV n DM WIMP Miracle s m DM DM SM h σ 2 → 2 v i ⇡ α 2 m 2 α ≈ 10 − 2 m ≈ 300 GeV DM SM “weak” coupling correct abundance “weak” mass scale Miracle 2
-36 10 ] ] s 2 2 CMS u -Nucleon Cross Section [cm C -Nucleon Cross Section [cm p D e -37 M r 10 C S direct detection D l i M t e S -38 10 -1 CMS, 90% CL, 7 TeV, 5.0 fb -39 10 -1 CMS, 90% CL, 8 TeV, 19.7 fb µ ( χ γ χ )( q γ q) CoGeNT 2011 -40 10 µ 2 Λ Vector -41 SIMPLE 2012 10 -42 10 COUPP 2012 LHC -43 CDMS II 10 X a 2 (G ) -1 χ χ α CMS, 90% CL, 8 TeV, 19.7 fb s µ ν E -44 10 XENON100 3 N 4 Λ LUX 2013 O χ -45 Scalar χ 10 N Spin Independent -46 1 10 t 3 2 10 10 1 10 M [GeV] χ e + γ from dSph
~ ~ ~ ~ ~ ~ ∼ ∼ ∼ ∼ 0 0 0 0 Status: ICHEP 2016 t t production, t b f f' / t c / t W b / t t → χ → χ → χ → χ 1 1 1 1 1 1 1 1 1 1 600 [GeV] ATLAS Preliminary s =13 TeV ~ ~ -1 ∼ 0 ∼ 0 t0L 13.2 fb [CONF-2016-077] t t / t W b → χ → χ 1 1 1 1 ~ 0 1 ∼ 0 -1 ∼ χ t1L 13.2 fb [CONF-2016-050] t t → χ 500 m 1 1 ~ ∼ 0 -1 t W b → χ t2L 13.3 fb [CONF-2016-076] 1 1 ~ ∼ 0 -1 MJ 3.2 fb [1604.07773] t c → χ 1 1 -1 Run 1 [1506.08616] s =8 TeV, 20 fb 400 Observed limits Expected limits All limits at 95% CL 300 W + m ) < m t ) < 0 0 ) < m b ∼ χ 0 1 ∼ ~ , χ 1 t , m( 1 ~ 0 t ∼ m( 1 χ 1 ~ , ∆ t m( 1 ∆ 200 ∼ 0 ∆ c χ 1 ∼ 0 b f f' χ 1 8 TeV 13 TeV 100 LQ1(ej) x2 LQ1(ej)+LQ1( ν j) β =0.5 coloron(jj) x2 ∼ 0 W b LQ2( μ j) x2 χ 1 LQ2( μ j)+LQ2( ν j) β =0.5 Multijet coloron(4j) x2 Leptoquarks LQ3( τ b) x2 LQ3( ν b) x2 Resonances gluino(3j) x2 LQ3( τ t) x2 0 LQ3(vt) x2 gluino(jjb) x2 Single LQ1 ( λ =1) 200 300 400 500 600 700 800 900 Single LQ2 ( λ =1) TeV 0 1 2 3 4 0 1 2 3 4 TeV m [GeV] ADD ( γ +MET), nED=4, MD ~ RS Gravitons t ADD (jj), nED=4, MS RS1(jj), k=0.1 1 QBH, nED=6, MD=4 TeV RS1( γγ ), k=0.1 NR BH, nED=6, MD=4 TeV RS1(ee, μμ ), k=0.1 String Scale (jj) 0 1 2 3 4 TeV no sign of QBH (jj), nED=4, MD=4 TeV CMS Preliminary ADD (j+MET), nED=4, MD Large Extra ADD (ee, μμ ), nED=4, MS Dimensions Heavy Gauge ADD ( γγ ), nED=4, MS new physics SSM Z'( ττ ) Jet Extinction Scale Bosons SSM Z'(jj) 0 1 2 3 4 5 6 7 8 9 10 SSM Z'(ee)+Z'(µµ) TeV SSM W'(jj) dijets, Λ + LL/RR that explains SSM W'(lv) dijets, Λ - LL/RR SSM Z'(bb) dimuons, Λ + LLIM 0 1 2 3 4 5 TeV dimuons, Λ - LLIM dielectrons, Λ + LLIM Excited naturalness! dielectrons, Λ - LLIM Fermions e* (M= Λ ) single e, Λ HnCM Compositeness μ * (M= Λ ) single μ , Λ HnCM q* (qg) inclusive jets, Λ + q* (q γ ) f=1 b* inclusive jets, Λ - 0 1 2 3 4 5 6 TeV 0 1 2 3 4 5 6 7 8 9 101112131415161718192021 TeV CMS Exotica Physics Group Summary – ICHEP , 2016 !
Beginning of Universe 1,000,000,001 1,000,000,001 anti-matter matter
fraction of second later 1 1,000,000,002 1,000,000,000 anti-matter matter turned a billionth of anti-matter to matter
Universe Now 2 us Gelmini, Hall, Lin (1987) Kaplan, Luty, Zurek, 0901.4117 anti-matter dark matter dark This must be how we survived the Big Bang! they
Two ways η DM = η b =0 η DM = η b =0 η DM + η b ≠ 0 η DM + η b =0, η DM =– η b ≠ 0 η DM ≠ 0 η DM ≠ 0 η b ≠ 0 η b ≠ 0
Asymmetric Dark Matter Ω DM n b η b m DM = m p ≈ 6 GeV × Ω b n DM η DM • Does this explain the “similarity” of dark matter and baryons? m p ≈ Λ e − 8 π 2 /g 2 s ( Λ ) b 0 • Need to come up with a dynamical origin of the dark matter mass linked to the QCD coupling
10 –30 10 –20 10 –10 mass 10 10 10 20 10 30 10 40 10 50 10 0 [GeV] to fluffy no good idea mirolensing etc 10 –10 mass 10 0 10 6 [GeV] WIMP asymmetric DM QCD axion
Topological defects • common interest among AMO, condensed matter, particle physics, algebraic geometry • symmetry breaking G → H • coset space G / H describes vacua • can the space be mapped non-trivially into the coset space? • π 0 ( G / H ) ≠ 0: domain walls Abrikosov • π 1 ( G / H ) ≠ 0: string (vortex) 2003 Nobel • π 2 ( G / H ) ≠ 0: monopole • π 3 ( G / H ) ≠ 0: skyrmion
Kibble mechanism • Kibble (1976) argued that phase transitions in expanding universe produce defects • second-order phase transitions have infinite correlation length ξ ∝ | T - T c | - ν • Therefore, all regions of causally connected space choose the same vacuum on G / H • However, there is a finite horizon size H -1 ≈ M Pl / T 2 • Kibble: about one defect per horizon
Time scale • We know that we need to cool the material slowly to grow a bigger crystal (e.g. clear ice in the freezer) • How does time scale come into the discussion? • It takes time for things to line up! relaxation • quench ed phase transition • general discussion by Zurek (1985) “Cosmological Experiments in Superfluid Helium?”
Recommend
More recommend