Luca Marzola Strong SO(10)-inspired leptogenesis – predictions and justification – Reference papers: • E. Bertuzzo, P . Di Bari, L.M. - Nucl.Phys.B849:521-548,2011 • P . Di Bari, L. M. - in preparation Rencontres de Moriond, E.W. session, 3-10/03/2012
The model: • Seesaw type I, 3 RH neutrinos N Ri 3 Φ − 1 L = L SM + iN Ri @ µ � µ N Ri − h α i ` L α N Ri ˜ X N c Ri D Mi N Ri + H.c. 2 i =1 18 new parameters: h α i , M i . D x :=diag(X 1 , X 2 ,X 3 ) L. Marzola - Rencontres de Moriond, EW session
The model: • Seesaw type I, 3 RH neutrinos N Ri 3 Φ − 1 L = L SM + iN Ri @ µ � µ N Ri − h α i ` L α N Ri ˜ X N c Ri D Mi N Ri + H.c. 2 i =1 18 new parameters: h α i , M i . D x :=diag(X 1 , X 2 ,X 3 ) • Seesaw algebra: assuming diagonalised charged leptons 1 m T − D m = U † m ν U ∗ m D = vh m ν = − m D D D M m D = V † L D m D U R L. Marzola - Rencontres de Moriond, EW session
The model: • Seesaw type I, 3 RH neutrinos N Ri 3 Φ − 1 L = L SM + iN Ri @ µ � µ N Ri − h α i ` L α N Ri ˜ X N c Ri D Mi N Ri + H.c. 2 i =1 18 new parameters: h α i , M i . D x :=diag(X 1 , X 2 ,X 3 ) • Seesaw algebra: assuming diagonalised charged leptons 1 m T − D m = U † m ν U ∗ m D = vh m ν = − m D D D M m D = V † m D V L UD m U T V T M U T M − 1 := D − 1 L D − 1 m D ≡ U R D − 1 L D m D U R R given by diagonalisation of M − 1 ( M − 1 ) † P . Di Bari, A. Riotto; 2008 L. Marzola - Rencontres de Moriond, EW session
The model: • Seesaw type I, 3 RH neutrinos N Ri 3 Φ − 1 L = L SM + iN Ri @ µ � µ N Ri − h α i ` L α N Ri ˜ X N c Ri D Mi N Ri + H.c. 2 i =1 18 new parameters: h α i , M i . D x :=diag(X 1 , X 2 ,X 3 ) • Seesaw algebra: assuming diagonalised charged leptons 1 m T − D m = U † m ν U ∗ m D = vh m ν = − m D D D M m D = V † m D V L UD m U T V T M U T M − 1 := D − 1 L D − 1 m D ≡ U R D − 1 L D m D U R R given by diagonalisation of M − 1 ( M − 1 ) † • Our choice: P . Di Bari, A. Riotto; 2008 15 + 3 → 6 + 3 + 6 + 3 h α i , M i → U, m i ,V L , m Di L. Marzola - Rencontres de Moriond, EW session
The model: • Seesaw type I, 3 RH neutrinos N Ri 3 Φ − 1 L = L SM + iN Ri @ µ � µ N Ri − h α i ` L α N Ri ˜ X N c Ri D Mi N Ri + H.c. 2 i =1 18 new parameters: h α i , M i . D x :=diag(X 1 , X 2 ,X 3 ) • Seesaw algebra: assuming diagonalised charged leptons 1 m T − D m = U † m ν U ∗ m D = vh m ν = − m D D D M m D = V † m D V L UD m U T V T M U T M − 1 := D − 1 L D − 1 m D ≡ U R D − 1 L D m D U R R given by diagonalisation of M − 1 ( M − 1 ) † • Our choice: P . Di Bari, A. Riotto; 2008 15 + 3 → 6 + 3 + 6 + 3 h α i , M i → U, m i ,V L , m Di neutrino oscillation SO(10)-inspired experiments conditions L. Marzola - Rencontres de Moriond, EW session
SO(10)-inspired leptogenesis: • SO(10)-inspired conditions: - V L mixing angles not larger than CKM ones - light neutrino Dirac masses proportional to the up-type quark ones: m Di parametrized by α i ~ α 1 m u 0 0 D m D = 0 α 2 m c 0 O(1)...but only α 2 matters! α 3 m t 0 0 L. Marzola - Rencontres de Moriond, EW session
SO(10)-inspired leptogenesis: • SO(10)-inspired conditions: - V L mixing angles not larger than CKM ones - light neutrino Dirac masses proportional to the up-type quark ones: m Di parametrized by α i ~ α 1 m u 0 0 D m D = 0 α 2 m c 0 O(1)...but only α 2 matters! α 3 m t 0 0 Strongly hierarchical RH neutrino mass spectrum: M 3 > 10 12 GeV > M 2 > 10 9 GeV � M 1 L. Marzola - Rencontres de Moriond, EW session
SO(10)-inspired leptogenesis: • SO(10)-inspired conditions: - V L mixing angles not larger than CKM ones - light neutrino Dirac masses proportional to the up-type quark ones: m Di parametrized by α i ~ α 1 m u 0 0 D m D = 0 α 2 m c 0 O(1)...but only α 2 matters! α 3 m t 0 0 Strongly hierarchical RH neutrino mass spectrum: M 3 > 10 12 GeV > M 2 > 10 9 GeV � M 1 • Leptogenesis process: N 2 dominated scenario P . Di Bari, A. Riotto; 2010 8 K 1 e + P 0 B − L ' P 0 τ 2 ) e − 3 π 2 µ τ 2 ) e − 3 π 8 K 1 µ + ε 2 τ κ ( K 2 , K 2 τ ) e − 3 π N lep,f 2 e 8 K 1 τ τ 2 κ ( K 2 , K ˜ τ 2 κ ( K 2 , K ˜ ε ˜ ε ˜ P 0 P 0 ˜ ˜ τ 2 τ 2 - N 3 : no active role - N 2 : asymmetry production in a 2-flavour regime - N 1 : asymmetry wash-out (M 1 <10 9 GeV) in a 3-flavour regime L. Marzola - Rencontres de Moriond, EW session
Strong thermal leptogenesis: • Why ? η CMB ∼ 10 − 9 B - 10 -9 is the natural order for η lep B ∼ 10 − 2 N lep,f B − L - Neglected possible preexistent contributions !! N preex, 0 ∼ O (1) B − L η B ' 10 − 2 ⇣ ⌘ N lep,f B − L + N preex,f � 10 − 9 B − L L. Marzola - Rencontres de Moriond, EW session
Strong thermal leptogenesis: • Why ? η CMB ∼ 10 − 9 B - 10 -9 is the natural order for η lep B ∼ 10 − 2 N lep,f B − L - Neglected possible preexistent contributions !! N preex, 0 ∼ O (1) B − L η B ' 10 − 2 ⇣ ⌘ N lep,f B − L + N preex,f � 10 − 9 B − L - depends on unknown initial conditions (state of the N preex, 0 B − L Universe after inflation era) why ? η CMB ∼ 10 − 9 B L. Marzola - Rencontres de Moriond, EW session
Strong thermal leptogenesis: • Why ? η CMB ∼ 10 − 9 B - 10 -9 is the natural order for η lep B ∼ 10 − 2 N lep,f B − L - Neglected possible preexistent contributions !! N preex, 0 ∼ O (1) B − L η B ' 10 − 2 ⇣ ⌘ N lep,f B − L + N preex,f � 10 − 9 B − L - depends on unknown initial conditions (state of the N preex, 0 B − L Universe after inflation era) • Strong thermal leptogenesis: E. Bertuzzo, P . Di Bari, L.M.; 2011 η B ' 10 − 2 ⇣ ⌘ N lep,f B − L + N preex,f ' 10 − 9 B − L - Easy achievement in Vanilla Leptogenesis - Flavour effects impose restrictive conditions on the seesaw parameter space, respected ONLY by the 휏 -N 2 dominated scenario L. Marzola - Rencontres de Moriond, EW session
Strong thermal leptogenesis: • Why ? η CMB ∼ 10 − 9 B - 10 -9 is the natural order for η lep B ∼ 10 − 2 N lep,f B − L - Neglected possible preexistent contributions !! N preex, 0 ∼ O (1) B − L η B ' 10 − 2 ⇣ ⌘ N lep,f B − L + N preex,f � 10 − 9 B − L - depends on unknown initial conditions (state of the N preex, 0 B − L Universe after inflation era) • Strong thermal leptogenesis: E. Bertuzzo, P . Di Bari, L.M.; 2011 η B ' 10 − 2 ⇣ ⌘ N lep,f B − L + N preex,f ' 10 − 9 B − L - Easy achievement in Vanilla Leptogenesis - Flavour effects impose restrictive conditions on the seesaw parameter space, respected ONLY by the 휏 -N 2 dominated scenario Asymmetric washout from N1: N2 dominated leptogenesis + K 1e, K 1µ >>1; K 1 휏 ~1 strong washout: K 2 >>1 L. Marzola - Rencontres de Moriond, EW session
Strong SO(10)-inspired leptogenesis: α 2 =5, 1 ⩽ V L ⩽ CKM, normal ordering. N preex, 0 =0, 10 -3 , 10 -2 , 10 -1 B − L 휃 13 vs m 1 휃 23 vs m 1 m ee vs m 1 ⍴ vs σ (1/ π ) J CP vs 휃 13 M i vs m 1 P . Di Bari, L.M. - Work in progress L. Marzola - Rencontres de Moriond, EW session
Epilogue: Strong leptogenesis: SO(10)-inspired model: • independence of initial • minimal SM extension • implement flavour effects conditions • justifies value of BAU • consistent with current • ensures predictability of experimental results the model Strong SO(10)-inspired leptogenesis: • phenomenological test of the Seesaw parameter space • no inverted ordering • sharp predictions: - m 1 ⋍ m ee ~10 -2 eV - large 휃 13 , non-maximal 휃 23 L. Marzola - Rencontres de Moriond, EW session
Recommend
More recommend