string theory on tst transformed background
play

String Theory on TsT-transformed Background Tatsuo Azeyanagi - PowerPoint PPT Presentation

String Theory on TsT-transformed Background Tatsuo Azeyanagi (Harvard) Based on Work (arXiv:1207.5050[hep-th]) with Diego Hofman, Wei Song and Andrew Strominger (Harvard) @ YITP Workshop on Field Theory and String Theory, July 23rd (Mon) 2012


  1. String Theory on TsT-transformed Background Tatsuo Azeyanagi (Harvard) Based on Work (arXiv:1207.5050[hep-th]) with Diego Hofman, Wei Song and Andrew Strominger (Harvard) @ YITP Workshop on Field Theory and String Theory, July 23rd (Mon) 2012

  2. AdS 3 /CFT 2 and Deformations AdS 3 / CFT 2 “The Most Powerful Holography” ex) D1-D5/F1-NS5, MSW CFT ... Power of Non-Chiral CFT 2 Two Virasoro Symmetries (+ Unitarity...) ex) Modular Invariance, Cardy Formula, Bootstrap ... Deformations Symmetry Becomes Smaller in General, but Holography Might Still Work ... UV is Deformed

  3. Null-Warped AdS 3 Gravity Side Son, Balasubramanian-McGreevy, Guica-Skenderis-Taylor-van Rees Null-Warped AdS 3 = 3d Schrodinger Spacetime (with z=2) ds 2 = − λ 2 du 2 + 2 dudv + dr 2 A = λ du r 2 r 4 r 2 Isometry Asymptotic Symmetry SL(2,R)xU(1) Virasoro x U(1) Kac-Moody CFT Side = Chiral SL(2,R)xU(1) CFT Add an Irrelevant Operator Sourced by a Massive Vector Z S = S CF T + λ O v ( z, ¯ z )

  4. Chiral SL(2,R)xU(1) CFT 2 Some Nice Properties 1) Gravity Dual = Warped AdS 3 Anninos-Li-Song-Strominger 2) Infinite-Dim. Extension of Symmetry → At Least, One Virasoro + U(1) Kac-Moody Hofman-Strominger 3)Stress-Energy Tensor, Correlators ex) Fefferman-Graham Exp., Conformal Perturb. Holographic Renormalization, ... Guica-Skenderis-Taylor-van Rees, Guica, van Rees ... Looks Nice but Comprehensive Understanding is Still Poor...

  5. Our Work To Understand Chiral CFT 2 and its Holography via String Theory Sketch AdS 3 xM 7 “Nice” Deformation Warped Geometry with SL(2,R)xU(1) Put a Worldsheet String on the Warped Geometry

  6. Index 1) Introduction 2) Warped Geometry in String Theory 3) String Spectrum 4) Boundary Modes

  7. Engineering Warped Spacetime TsT transformation Lunin-Maldacena Maldacena-Martelli-Tachikawa Mix Up Two U(1)s of the Background T) T-dual Along the Blue Circle s) Take a Linear Combination of Blue and Red Circles T) T-dual Along the Blue Circle Again → TsT of AdS 3 xS 3 with RR Flux = Warped AdS 3 xS 3 (Direct Product) Mauricio-Oz-Theisen, El-Showk-Guica, Song-Strominger... Dual CFT : Dipole-Deformed CFT Ganor ... → TsT of AdS 3 xS 3 with NSNS Flux =Warped AdS 3 xS 3 (Not Direct Product) (Reduce to Null Warped AdS 3 in 3d)

  8. Our Setup Before Deformation = NSNS AdS 3 xS 3 SL (2) L × SL (2 , R ) R × SU (2) L × SU (2) R k 3 ∼ ¯ ¯ j − ∼ ∂ µ ∂ ¯ ϕ Warped Background λ :deformation parameter ds 2 = Q γ + d ρ 2 + d Ω 2 e 2 ρ d γ d ¯ 3 + λ e 2 ρ d ¯ � � γ ( d ψ + cos θ d φ ) B = − Q � cos θ d φ ∧ d ψ + 2 e 2 ρ d γ ∧ d ¯ γ + 2 λ e 2 ρ ( d ψ + cos θ d ψ ) ∧ d ¯ � γ 4 Isometry U (1) L × SL (2 , R ) R × SU (2) L × U (1) R String Worldsheet ✓ ∂ρ + 1 ◆ L = Q γ (¯ ∂γ + λ (¯ ∂ψ + cos θ ¯ ∂φ )) + ∂ρ ¯ 4(¯ ∂ψ + cos θ ¯ e 2 ρ ∂ ¯ ∂φ ) ∂ψ + · · · 2 π ∼ ( AdS 3 string ) + λ j − ¯ k 3

  9. Two Keys 1) String on TsT Background Has a Nice Property Frolov, Alday-Arutyunov-Frolov Russo, Tseytlin, Spradlin-Takayanagi-Volovich ... 2) String on AdS 3 with NS-NS flux is Well-Known (Free Field Rep. Near the Boundary) Giveon-Kutasov-Seiberg, Kutasov-Seiberg, de Boer-Ooguri-Robins-Tannenhauser, Maldacena- Ooguri, Teschner, Hosomichi-Okuyama-Satoh, Hikida- Hosomochi-Sugawara, Ishibashi-Okuyama-Satoh ...

  10. TsT and Field Redefinition For String on General TsT Backgruonds, Alday-Arutyunov-Frolov String on TsT Background Field Redefinition String on Original Background with Twisted B.C. → Twisted Boundary Condition γ ( σ ) + 2 πλ ψ ( σ ) + 4 πλ ψ ( σ + 2 π ) = ˆ ˆ γ ( σ + 2 π ) = ˆ ˆ Q (¯ q − λ p ) Q p → Local Dynamics (OPE, WS Conserved Currents) is Unchanged in Terms of New Variables µ ( z )ˆ γ ( w ) ∼ − log( z − w ) ϕ (¯ ¯ z ) ¯ ϕ ( ¯ w ) ∼ − (2 /Q ) log(¯ z − ¯ w )

  11. Vertex Operators Physical Requirements V p, ¯ q Momemtum/Charges ˆ pV p, ¯ q = pV p, ¯ ˆ qV p, ¯ qV p, ¯ ¯ q = ¯ q q Twisted Boundary Conditions q ( w ) ∼ i λ γ ( z ) V p, ¯ ˆ Q (¯ q − λ p ) log( z − w ) V p, ¯ q ( w ) q ( w ) ∼ 2 i λ ˆ ψ ( z ) V p, ¯ Q p log(¯ z − ¯ w ) V p, ¯ q ( w ) Vertex Operator γ e i ( ¯ q ϕ e − i λ Q (¯ q − λ p ) µ q = V 0 e ip ˆ 2 − λ p ) ¯ V p, ¯ Consistency is OK

  12. String Spectrum Looking Again the Vertex Operator γ e i ( ¯ q ϕ e − i λ γ + i ¯ q ϕ e − i λ Q (¯ q − λ p ) µ = V 0 e ip ˆ Q (¯ q − λ p ) µ q = V 0 e ip ˆ 2 − λ p ) ¯ 2 ¯ ϕ e − i λ p ¯ V p, ¯ → Deformation = (Momentum/Charge Dep.) Spectral Flow cf) Spectral Flow for String on NS-NS AdS 3 Maldacena-Ooguri = Flow from the Unwinding to Winding Sector On-Shell Condition + ( λ p ) 2 − λ p ¯ L 0 = − h ( h − 1) + J ( J − 1) q + ( N − a ) = 0 Q − 2 Q − 2 ・ Level Matching is Automatic ・ Consistent with SUGRA Analysis String on Warped Geometry : Defined by This Spectral Flow

  13. Holography from String Worldsheet “GKS formalism” Giveon-Kutasov-Seiberg, Kutasov-Seiberg (For AdS 3 ) Generators Acting on the Boundary = WS Integrals of Vertex Ops. Dressed by Momentum Z d 2 z π i k a ¯ G a ( p ) = ∂ e ip ˆ γ ex) SU(2) L Kac-Moody Based on Spectral Flowed Vertex Ops. + GKS Virasoro (Untouched) Right Virasoro Left Virasoro Global U(1) Global SU(2) Left SU(2) K-M U(1) Kac-Moody Right SU(2) K-M

  14. Crossover Modes Crossover Mode (For Both SU(2) L and U(1) L ) Left Isometries Can Enhance to Infinite-Dim. By Dressing with Right Momentum p ) = e i ¯ p ¯ ξ C (¯ γ ∂ γ ex) U(1) Crossover [ ¯ p 0 )] = i ¯ p 0 G C (¯ p 0 ) T (¯ p ) , G C (¯ p + ¯ Detournay-Compere, Strominger, cf ) Also appeared in varous context Hartman-Strominger, Hofman-Strominger Key Ingredient to Understand Warped Holography!? Note: Boundary Condition is Another Issue → Consistent Physical Spectrum is Chosen by B.C.

  15. Summary 1) String on TsT-transformed F1-NS5 = “Spectral Flow” of AdS 3 xS 3 String 2) String Spectrum Consistent with SUGRA 3) Boundary Modes of String Worldsheet ・ Virasoro+U(1) Kac-Moody (so far) ・ Crossover Modes Gauge Choice? More Complicated Operators?

Recommend


More recommend