String theory compactifications with sources Alessandro Tomasiello PRIN Kicko ff Meeting, SNS Pisa, 19.10.2019
Introduction For de Sitter solutions in string theory, we need to break supersymmetry, and to consider… • higher - derivative operators e.g. ( Riemann ) k • orientifold - planes ( O - planes ) [ Gibbons ’84; de Wit, Smit, Hari Dass ’87, Maldacena, Nuñez ’00 ] [ Bianchi, Pradisi, Sagnotti ’91… ] • Most activity: 4d e ff ective actions [ Kachru, Kallosh, Linde, T rivedi ’03, Silverstein ’07… huge list ] furious debate! [ Bena, Graña, Halmagyi ’09, Banks ’12, Sethi ’17… ] • Finding solutions directly in 10d? still a challenge: • O - planes back - react on geometry and create singularities • when higher - derivatives get involved, they do so all at once
• it has been hard to find examples; often people have resorted to ‘smearing’ [ Acharya, Benini, V alandro ’05, Graña, Minasian, Petrini, AT ’06, Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann ’08, Andriot, Goi, Minasian, Petrini ’10… ] localized smeared However, O - planes should sit at fixed loci of involutions they shouldn’t be smeared by definition. • several people tried to understand criteria for un - smearing [ Dong, Horn, Silverstein, Torroba ’10; Blåbäck, Danielsson, Junghans, V an Riet ’14… ] • But: solutions with unsmeared O - plane singularities have appeared in the last few years for supersymmetric AdS Maybe time to try again for dS?
Plan • some explicit solutions • Review: Localized sources in AdS • how to find them • why one should believe them • Ideas for supersymmetry breaking • some simple de Sitter models
AdS with sources • Sometimes solutions with sources come from near - horizon limits D4 dissolved, but O8 O8 remains D3 dissolve; no source after near - horizon N D4 N D3 AdS 5 × S 5 AdS 6 × ( top .S 4 ) [ Y oum ’99, Brandhuber, Oz ’99 ] • Unclear if all AdS are near - horizon limits • Intersecting brane solutions are rare anyway • Better strategy: work out boundary conditions corresponding to various sources
• Sources create singularities where supergravity breaks down p + 1 , . . . , 9 0 , . . . , p e φ = g s H (3 − p )/4 backreaction ds 2 10 = H � 1/2 ds 2 k + H 1/2 ds 2 ? on flat space: ⊥ = dr 2 + r 2 ds 2 ds 2 S 8 − p harmonic function in R 9 − p ⊥ • supergravity artifacts: they should be resolved in appropriate duality frame D - branes O - planes [O p − : tension=charge= − 2 p − 5 ] � r 0 � 7 − p p < 7 : H = 1 − H r H � r 0 � 7 − p p < 7 : H = 1 + r r 0 r unphysical r r 0 ‘hole’! a = 0 : p = 8 : H = a + | z / z 0 | H H H e φ → ∞ p = 8 : H = a − | z / z 0 | { z a z z
[ Apruzzi, Fazzi, Rosa, AT ’13 • Example : AdS7 in IIA. All solutions: Apruzzi, Fazzi, Passias, Rota, AT ‘15; Cremonesi, AT ’15; Bah, Passias, AT ‘17 ] r α 2 r 1 − ¨ ✓ ◆ − α α α ) 3 / 4 2 ds 2 = 8 dz 2 + e φ = 2 5 / 4 π 5 / 2 3 4 ( − α / ¨ α ds 2 α ds 2 AdS 7 + √ √ α 2 − 2 α ¨ S 2 ¨ α ˙ π α 2 − 2 α ¨ ˙ α interval ✓ α ˙ ◆ α B = π − z + vol S 2 α 2 − 2 α ¨ ˙ α ... α piecewise cubic α = F 0 ✓ ¨ π F 0 α ˙ ◆ α α , F 2 = 162 π 2 + vol S 2 α 2 − 2 α ¨ ˙ α • At endpoint, smoothness: S 2 should shrink, α α → 0 , ¨ α → 0 α finite ¨ D8s D8 • When F 0 jumps smooth endpoint z what happens with other boundary conditions?
compare locally with r α 2 r 1 − ¨ ✓ ◆ ds 2 10 = H � 1/2 ds 2 k + H 1/2 ds 2 − α α 2 ds 2 = 8 dz 2 + α ds 2 α ds 2 AdS 7 + √ ? α 2 − 2 α ¨ S 2 ¨ α ˙ π [ Blåbäck, Danielsson, Junghans, V an Riet, Wrase, Zagermann ’11; Apruzzi, Fazzi, Rosa, AT 13… ] H • α → 0 D6 transverse R 3 AdS 7 + z − 1/2 ( dz 2 + z 2 ds 2 ds 2 ∼ z 1/2 ds 2 z S 2 ) α ( z 0 ) ˙ α ( z 0 ) ¨ α ( z 0 ) • Other interesting 6 = 0 6 = 0 D6 0 boundary conditions: O6 6 = 0 6 = 0 0 6 = 0 regular point 0 0 O8 6 = 0 0 0
• Why should we believe this? Holographic checks: [ Cremonesi, AT ’15 ] [ Apruzzi, Fazzi ‘17 ] Examples dual quiver theory [ SU gauge groups ] D8s D8s integral over susy, grav. & [ Ohmori, Shimizu, Tachikawa, Y onekura ’14; internal dimensions R - symmetry anomalies Cordova, Dumitrescu, [ Henningson, Skenderis ’98 ] Intriligator ’15 ] 7 k 2 ( N 3 − 4 Nk 2 + 16 a = 16 5 k 3 ) O8+D8 D6 Nn 0 E 9 − n 0 ( N − 1) n 0 2 n 0 n 0 . . . a = 16 10 N 5 n 2 3 [ Bah, Passias, AT ’16 ] 0 7 [ Apruzzi, Fazzi ‘17 ]
Other examples no O - planes so far also no O - planes. Possible extension with 7 - branes? • AdS4 in IIA ( top .S 3 ) → H 3 , S 3 [ Rota, AT’15; Passias, Prins, AT ’18; Bah, Passias, W eck ’18 ] sources: ( top . S 2 ) → KE 4 , Σ g × Σ g 0 D8, D6, O8, O6 O8 [ Couzens, Lawrie, Martelli, Schäfer - Nameki ’17; • AdS 3 in F-theory Haghighat, Murthy, V andoren, V afa ’15 ]
Supersymmetry breaking • Possible way of breaking susy: consistent truncations once rare; now common, although perhaps general theory still lacking • For ex: every AdS7 solution has a non - susy ‘evil twin’ [ Passias, Rota, AT ’15 ] established via consistent truncation: some small changes 12 r r α 2 1 − ¨ ✓ ◆ − α α 2 ds 2 = 8 dz 2 + α ) 3 / 4 e φ = 2 5 / 4 π 5 / 2 3 4 ( − α / ¨ α ds 2 α ds 2 AdS 7 + √ α 2 − 2 α ¨ S 2 √ ¨ α ˙ π α 2 − 2 α ¨ ˙ α • Most are unstable [ Danielsson, Dibitetto, V argas ’17; Apruzzi, De Luca, Gnecchi, Lo Monaco, AT, in progress ] pert. instability for all solutions with part of the KK spectrum via 7d trick D8s on top of each other non - pert. instability for all solutions NS5 ‘bubbles’ with a massless region
• More general strategy? [ Legramandi, AT; in progress ] let’s start from an easy class: eg. Mink 6 × M 4 [ Imamura ’01; Janssen, Meessen, Ortin ‘99 ] ds 2 = S − 1/2 ds 2 Mink 6 + K ( S − 1/2 dz 2 + S 1/2 ds 2 R 3 ) d H ( e 3 A − φ Φ + ) = 0 [ motivated by NS5 - D6 - D8 ] d H ( e 2 A − φ Re Φ − ) = 0 z S 2 = 0 K = − 4 ⊃ ∆ 3 S + 1 2 ∂ 2 F 0 ∂ z S d H ( e 4 A − φ Im Φ − ) = e 4 A ? � ( F ) [ Lüst, Patalong, Tsimpis ’10; susy breaking Graña, Minasian, Petrini, AT ‘05 ] keep same fluxes; impose Bianchi, but not BPS d H ( e 3 A − φ Φ + ) = 0 d H ( e 2 A − φ Re Φ − ) = c e 8 A − 2 φ vol M 4 K = − 4 F 0 ∂ z S z S 2 + c z ∂ 2 ∆ 3 S + 1 2 ∂ 2 z S = 0 d H ( e 4 A − φ Im Φ − ) = e 4 A ? � ( F ) ⊃ S = e − 4 A + cz we checked that this small modification similar in spirit to adding works in several other classes primitive part to G 3 in conf. CY [ Becker, Becker ’96, Dasgupta, Rajesh, Sethi ’98, Graña, Polchinski ’00, Giddings, Kachru, Polchinski ‘01 ]
dS with O8 - planes same effect as O 8 + O8 − + 16 D8 • Simplest model [ Córdova, De Luca, AT ’18 ] Z 2 ds 2 = e 2 W ( z ) ds 2 dS 4 + e − 2 W ( z ) ( dz 2 + e 2 λ ( z ) ds 2 z M 5 ) compact hyperbolic O 8 − Boundary condition at O8+ Minkowski: [ Bianchi, Pradisi, Sagnotti ’91, Dabholkar, Park ’96, Witten ’97, e W � φ f 0 f i = { W, 1 5 φ , 1 i | z ! 0 + = 1 2 λ } Aharony, Komargodski, Patir ‘07 ] see also [ Silverstein, Strings 2013 talk ] Numerical evolution: e f i ∼ | z − z 0 | − 1/4 same as O8_ in flat space we manage to reach [ even the coe ffi cients work ] 30 e λ inevitably, O8_ has strongly coupled region 20 10 e W e φ z 0 5 10 15 O 8 − O 8 +
• Rescaling symmetry: g MN → e 2 c g MN , φ → φ − c 30 150 20 100 10 50 z z 0 5 10 15 10 20 30 40 50 it makes strong - coupling region small, but it doesn’t make it disappear. . . . � e − 2 φ R 4 � e − 2 φ R • In the O8_ region stringy corrections become dominant � R 4 supergravity action is least important term; ideally in this region we’d switch to another duality frame. Full string theory should then fix c • Hope that this solution is sensible comes from similarity with flat - space O8_ ( which we know to exist in string theory )
dS with O8s and O6s • W e also tried: O8 + –O6 − [ Córdova, De Luca, AT, to appear ] H = h 1 dz ∧ vol 2 + h 2 vol 3 ds 2 = e 2 W ds 2 dS 4 + e − 2 W ( dz 2 + e 2 λ 3 ds 2 M 3 + e 2 λ 2 ds 2 S 2 ) F 2 = f 2 vol 2 F 4 = f 41 vol 3 ∧ dz + f 42 vol 4 surrounds the O6 F 0 = / 0 • we already know one such solution for Λ < 0 : α = 3 k ( N 2 − z 2 ) + n 0 ( z 3 − N 3 ) from a non - susy AdS7 solution with O8+ and O6_ � � � √ π ds 2 = 12 � − α dz 2 + α 2 1 − ¨ α ds 2 α ds 2 α AdS 7 + O8+ α 2 − α ¨ S 2 ¨ ˙ α AdS 4 × H 3 O6_ compact hyperbolic
ds 2 = e 2 W ds 2 dS 4 + e − 2 W ( dz 2 + e 2 λ 3 ds 2 M 3 + e 2 λ 2 ds 2 • we slowly modified it numerically, bringing Λ up S 2 ) [ functions rescaled for clarity ] [ analytic AdS4 ] [ numeric dS4 ] 3 4 W e still obtain e λ 2 2 3 the O6 boundary. 2 1 e 4 W = e 2 λ 3 1 z e φ 10 20 30 40 z 25 50 75 100 125
Conclusions • A lot of progress in AdS solutions • often localized O - plane sources are possible • holography works even in their presence • sometimes non - supersymmetric • Time to look for de Sitter • Using numerics, we find dS solutions with O8 - planes in relatively simple setup • Also O8 - O6 solutions • There are regions where supergravity breaks down. Inevitable! If you want solutions with O - planes. W e better learn how to deal with them.
Recommend
More recommend