status of neutrino astronomy sources of high energy
play

Status of neutrino astronomy ( Sources of high-energy neutrinos ) - PowerPoint PPT Presentation

Status of neutrino astronomy ( Sources of high-energy neutrinos ) Julia K. Becker Gteborgs Universitet, Sweden see also Physics Reports 458 , ArXiv:0710.1557 (2008) Astrophysical Neutrinos May 31st Neutrino 2008, Christchurch, NZ Julia K


  1. Status of neutrino astronomy ( Sources of high-energy neutrinos ) Julia K. Becker Göteborgs Universitet, Sweden see also Physics Reports 458 , ArXiv:0710.1557 (2008)

  2. Astrophysical Neutrinos May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  3. Overview � Production of high-energy neutrinos • how? • why? � Potential emitters Neutrino flux models for extragalactic sources � • Active Galactic Nuclei • Gamma Ray Bursts May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  4. Neutrino production p γ � ∆ + � π + n/ π 0 p � π + � µ + ν µ � e + ν e ν µ ν µ • π 0 � γ γ (E γ ~TeV) • • Pions : Correlation TeV Photons – Neutrinos • Optically thick environment: E γ ~keV-GeV Main assumption: � • L γ ~ L p ~ L ν • Photon luminosity: Sources can be identified • Proton luminosity ~ TeV sources • Careful! � Other processes ( Inverse Compton, proton synchrotron can contribute, too!) Animation generated with povray May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  5. Neutrino flux from a single source −  Φ d E α − ν  ν  ν = ⋅ ⋅ A E exp   ν ν dE E   ν max •Spectral index neutrinos ~ spectral behavior protons ~ 2 •Maximum neutrino energy ~ proton maximum energy •Normalization A ν : electromagnetic or hadronic emission � / / / / ... L L L L L ∝ radio X ray TeV p ν γ − − (dependent on the underlying model) May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  6. Diffuse neutrino flux single source flux source distribution function flux decreases comoving volume with distance d May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  7. Why neutrinos, anyway? (I) (b) TeV Photons (a) Charged Cosmic Rays 1ES1959+650, MWL Krawczynski et al., ApJ 601 (2004) May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  8. Why neutrinos, anyway? (II) Cherenkov Figure: Wolfgang Wagner, PhD thesis May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  9. Potential HE neutrino sources extragalactic: galactic: SNRs AGN XRBs GRBs µ quasars Starbursts Pulsars GZK ν s Mol. clouds ... ... M87 GRB080319b GRB080319b M87 M82 Crab pulsar GRS 1915+105 May 31st Neutrino 2008, Christchurch, NZ Julia K Becker Tycho SNR

  10. AGN: First discovery � 1962 : 3C 273 - Quasi- stellar Object (QSO) core extremely bright, � not resolvable � looks like a star High Radioemission � 1963: ! no star � � Active Galaxy (Maarten Schmidt) www. time .com/ time /covers May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  11. HST Image of the Torus Ground based optical/ radio and the core 380 arcsec 1.7 arcsec NGC 4261 88 000 ly 400 ly May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  12. Theoretical bounds? Baikal (2000) Baikal (2000) Baikal (2000) Baikal (2000) IceCube sensitivity AMANDA (2008) Waxman&Bahcall, PRD 59 :23002 (1999) Mannheim et al., PRD 63 :23003 (2001) May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  13. AGN: Neutrinos & X-rays? Nellen,Mannheim&Biermann Phys.Rev.D (1993) Stecker&Salamon Space Science Rev. (1996) Baikal (2000) Alvarez-Muñiz & Mészáros PRD 70 (2004) Fréjus : Rhode&Daum, Astropart. Phys. 4:217 (1996) Baikal: Dzhilkibaev et al., Phys.Atom.Nucl. 63 :951 (2000) May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  14. AGN: Neutrinos & X-rays? (1) Nellen,Mannheim&Biermann Phys.Rev.D (1993) (2) Stecker&Salamon Space Science Rev. (1996) (3) Alvarez-Muñiz & Mészáros PRD 70 (2004) Data: AMANDA (2000-2003) Spectrum: Münich et al., ICRC 2007 Limits: Achterberg et al, PRD JKB et al, Astrop. Phys. 28 :98 (2007) 75 (2007) May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  15. Steep or flat spectrum sources? JKB & P. L. Biermann, ArXiv:0805.1498 May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  16. Neutrino flux & Cosmic Rays Normalize to Auger � correlation � Neutrino production at the foot of the jet � Flat spectrum radio q. Model fits recent � observations of BL Lac ( Marscher et al, (1) Cuoco & Hannestad, ArXiv:0712.1830 (2) Koers & Tinyakov, ArXiv:0802.2431 Nature 2008 ) and M 87 (3) Halzen & Ó Murchacha, ArXiv:0802.0887 ( Walker et al, (4) JKB & Biermann, ArXiv:0805.1498 (5) Kachelrieß et al., ArXiv:0805.2608 ArXiv:0803.1837) May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  17. Gamma Ray Bursts May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  18. Unvoluntary Pioneer - Vela � 1967 – 1979 original goal: � controling nuclear tests (USA/Soviet Union) � Coincidental detection of Gamma Ray Bursts May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  19. Gamma Ray Burst – time profile May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  20. GRB progenitors Long GRBs � Supernova Explosions Short GRBs � binary mergers duration > 2 s duration < 2 s typically ~ 40 s ~ms - s Animated movies: Nasa May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  21. Prompt GRB ν Spectrum A ν α β 1 = + γ β α 1 = + γ β α b b ( ) ε ε E , z = 0 ν ν s s ( ) ε ε F , t , z = 90 ν ν γ b s ε ε ν ν A F ∝ ν γ Waxman & Bahcall, PRL 78 :2292 (1997) May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  22. GRB080319B A. Kappes http://grb.fuw.edu.pl/pi/index.html F γ = 5.72e-4 erg/cm 2 z = 0.94 α γ = 0.82 IceCube-9: ~0.1 event t 90 = 60s β γ = 3.87 IceCube-80: ~1 event Γ = 285 b = 0.651MeV ε γ May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  23. Towards the next generation IceCube & Km3NeT � North & South view • Acoustic & radio technique � for the highest energies • ANITA, Aura, ARIANNA, AMADEUS, SalSa, LUNASKA, ... Together with Glast, CTA, � Hawk ,...; Auger South & north , ... � create a complete view of the non-thermal Universe May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

  24. High-energy neutrinos � Produced in p γ /pp interactions � Potential sources: • Galactic (only up to 10-100 TeV ) – SNR, XRB, µ quasars, pulsars, ... Extragalactic ( up to 10 11 GeV ) – AGN, GRBs, ... • � Experiments • Improvement of limits by 2.5 orders of magnitude in the past 7 years • First physics conclusions (X-ray emitting AGN, ...) • New generation to come ( IceCube, Km3NeT ), explore optically thin & thick sources May 31st Neutrino 2008, Christchurch, NZ Julia K Becker

Recommend


More recommend