stable lpv realization of parametric transfer functions
play

Stable LPV realization of parametric transfer functions and its - PowerPoint PPT Presentation

Stable LPV realization of parametric transfer functions and its application to gain-scheduling control design Franco Blanchini 1 , Daniele Casagrande 2 Stefano Miani 2 and Umberto Viaro 2 1 Dipartimento di Matematica e Informatica Universit a


  1. Stable LPV realization of parametric transfer functions and its application to gain-scheduling control design Franco Blanchini 1 , Daniele Casagrande 2 Stefano Miani 2 and Umberto Viaro 2 1 Dipartimento di Matematica e Informatica Universit´ a degli Studi di Udine 2 Dipartimento di Ingegneria Elettrica Gestionale e Meccanica Universit´ a degli Studi di Udine August 30, 2011 logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  2. Transfer function versus state–space Plant: x ( t ) = Ax ( t )+ Bu ( t ) ˙ y ( t ) = Cx ( t ) Control: z ( t ) = Fz ( t )+ Gy ( t ) ˙ u ( t ) = Hz ( t )+ Ky ( t ) logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  3. Transfer function versus state–space Plant: y ( s ) = P ( s ) u ( s ) Control: u ( s ) = K ( s ) y ( s ) Under suitable “no zero–pole cancellation” assumptions ∀ s ∈ C + det ( I − K ( s ) P ( s )) � = 0 , ⇔ � A + BKC � BH is such that Re ( λ i ) < 0 GC F logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  4. Transfer function versus state–space Closed–loop stability does not depend on the chosen realization; Optimality does not depend on the chosen realization; (if you do not consider numerical problems) logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  5. Parametric design Plant: x ( t ) = A ( w ) x ( t )+ B ( w ) u ( t ) ˙ y ( t ) = C ( w ) x ( t ) w ∈ W is a constant parameter Control: z ( t ) = F ( w ) z ( t )+ G ( w ) y ( t ) ˙ u ( t ) = H ( w ) z ( t )+ K ( w ) y ( t ) � A ( w )+ B ( w ) K ( w ) C ( w ) � B ( w ) H ( w ) G ( w ) C ( w ) F ( w ) must be Hurwitz for all w ∈ W . logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  6. LPV design A(w) B(w) C(w) u w y F(w) G(w) H(w) K(w) Figure: Gain–scheduling control logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  7. LPV design Plant: x ( t ) = A ( w ( t )) x ( t )+ B ( w ( t )) u ( t ) ˙ y ( t ) = C ( w ( t )) x ( t ) w ( t ) is an arbitrary time–varying parameter w ( t ) ∈ W Control: z ( t ) = F ( w ( t )) z ( t )+ G ( w ( t )) y ( t ) ˙ u ( t ) = H ( w ( t )) z ( t )+ K ( w ( t )) y ( t ) logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  8. Motivation: parametric synthesis STABILITY w(t) OPTIMALITY Pointwise optimality LPV stability1 logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  9. Motivation: parametric synthesis STABILITY w(t) OPTIMALITY Pointwise optimality LPV stability logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  10. Motivation: parametric synthesis p u h 1 y w − ≤ w ≤ w + y ( t ) = − α y ( t )+ w ( t ) u ( t ) , α > 0 , ˙ logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  11. Motivation: parametric synthesis p u h 1 y w − ≤ w ≤ w + y ( t ) = − α y ( t )+ w ( t ) u ( t ) , α > 0 , ˙ logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  12. Motivation: parametric synthesis p u h 1 y w − ≤ w ≤ w + y ( t ) = − α y ( t )+ w ( t ) u ( t ) , α > 0 , ˙ logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  13. Motivation: parametric synthesis logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  14. Motivation: parametric synthesis Compensator: κ ( w ) κ ( w ) = − κ 0 s + β , β > 0 , w , κ 0 > 0 , logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  15. Motivation: parametric synthesis Compensator: κ ( w ) κ ( w ) = − κ 0 s + β , β > 0 , w , κ 0 > 0 , Closed loop polynomial: d ( s ) = s 2 +( β + α ) s + αβ + κ 0 . logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  16. Motivation: parametric synthesis Compensator: κ ( w ) κ ( w ) = − κ 0 s + β , β > 0 , w , κ 0 > 0 , Closed loop polynomial: d ( s ) = s 2 +( β + α ) s + αβ + κ 0 . Realizations � - β � � � - β 1 - κ 0 / w Σ 1 ( w ) = , Σ 2 ( w ) = − κ 0 / w 0 1 0 logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  17. Motivation: parametric synthesis Compensator: κ ( w ) κ ( w ) = − κ 0 s + β , β > 0 , w , κ 0 > 0 , Closed loop polynomial: d ( s ) = s 2 +( β + α ) s + αβ + κ 0 . Realizations � - β � � � - β 1 - κ 0 / w Σ 1 ( w ) = , Σ 2 ( w ) = − κ 0 / w 0 1 0 Closed–loop systems � − α � � � − κ 0 − α w A 1 ( w ) = , A 2 ( w ) = 1 − β − κ 0 / w − β � �� � � �� � LPV stable LPV unstable logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  18. Motivation: parametric synthesis Compensator: κ ( w ) κ ( w ) = − κ 0 s + β , β > 0 , w , κ 0 > 0 , Closed loop polynomial: d ( s ) = s 2 +( β + α ) s + αβ + κ 0 . Realizations � - β � � � - β 1 - κ 0 / w Σ 1 ( w ) = , Σ 2 ( w ) = − κ 0 / w 0 1 0 Closed–loop systems � − α � � � − κ 0 − α w A 1 ( w ) = , A 2 ( w ) = 1 − β − κ 0 / w − β � �� � � �� � LPV stable LPV unstable Stability depends on the compensator realization: Rugh and Shamma (2000). logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  19. LPV stabilizability: separation principle Theorem P = ( A ( w ) , B ( w ) , C ( w )) LPV is stabilizable via linear LPV control iff it is possible to build an LPV state observer and an LPV stabilizing state feedback (dual problems). PLANT y u A(w) B(w) C(w) 0 x OBSERVER (w) ESTIMATED STATE FEEDBACK (w) logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  20. LPV stabilizability: duality Theorem P = ( A ( w ) , B ( w ) , C ( w )) LPV is stabilizable iff A ( w ) X + B ( w ) U ( w ) = XP ( w ) (state feedback eq. ) , RA ( w )+ L ( w ) C ( w ) = Q ( w ) R (state observer eq. ) . X full row rank, R full column rank, µ 1 ( P ( w )) < 0 , µ ∞ ( Q ( w )) < 0 . logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  21. LPV stabilizability: duality Theorem P = ( A ( w ) , B ( w ) , C ( w )) LPV is stabilizable iff A ( w ) X + B ( w ) U ( w ) = XP ( w ) (state feedback eq. ) , RA ( w )+ L ( w ) C ( w ) = Q ( w ) R (state observer eq. ) . X full row rank, R full column rank, µ 1 ( P ( w )) < 0 , µ ∞ ( Q ( w )) < 0 . Theorem P = ( A ( w ) , B ( w ) , C ( w )) is quadratically stabilizable iff PA ( w ) T + A ( w ) P + B ( w ) U ( w )+ U ( w ) T B ( w ) T < 0 , A ( w ) T Q + QA ( w )+ Y ( w ) C ( w )+ C T ( w ) Y ( w ) T < 0 , logo with P > 0 and Q > 0 . Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  22. LPV stable synthesis Assumption ( A ( w ) , B ( w ) , C ( w )) is (quadratically) LPV stabilizable. logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  23. LPV stable synthesis Assumption ( A ( w ) , B ( w ) , C ( w )) is (quadratically) LPV stabilizable. Question: Given a plant ( A ( w ) , B ( w ) , C ( w )) and a parametric compensator transfer function R ( s , w ) such that the closed–loop system is stable for constant values w ∈ W , is it possible to realize this compensator in such a way that the closed loop is LPV stable? logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  24. LPV stable synthesis Assumption ( A ( w ) , B ( w ) , C ( w )) is (quadratically) LPV stabilizable. Question: Given a plant ( A ( w ) , B ( w ) , C ( w )) and a parametric compensator transfer function R ( s , w ) such that the closed–loop system is stable for constant values w ∈ W , is it possible to realize this compensator in such a way that the closed loop is LPV stable? Theorem Yes, it is. logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  25. LPV stable realization Definition Given T ( s , w ) = N ( s , w ) d ( s , w ) , w ∈ W , the systems z ( t ) = F ( w ) z ( t )+ G ( w ) ω ( t ) , ˙ ξ ( t ) = H ( w ) z ( t )+ K ( w ) ω ( t ) , is a parametric realization of T ( s , w ) if T ( s , w ) = H ( w )( sI − F ( w )) − 1 G ( w )+ K ( w ) , ∀ w ∈ W . logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  26. Basic result Definition LPV stable realization . Assuming that d ( s , w ) is a Hurwitz polynomial for all w ∈ W , the realization � F ( w ) � G ( w ) Σ ( w ) = , H ( w ) K ( w ) is LPV stable if z ( t ) = F ( w ( t )) z ( t ) (1) ˙ is asymptotically stable for any function w ( t ) ∈ W . logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  27. Basic result Definition LPV stable realization . Assuming that d ( s , w ) is a Hurwitz polynomial for all w ∈ W , the realization � F ( w ) � G ( w ) Σ ( w ) = , H ( w ) K ( w ) is LPV stable if z ( t ) = F ( w ( t )) z ( t ) (1) ˙ is asymptotically stable for any function w ( t ) ∈ W . Theorem Each parametric transfer function T ( s , w ) , with d ( s , w ) Hurwitz, admits an LPV stable realizations. logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  28. Procedure Procedure logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

  29. Procedure Procedure 1 Take any realization � ˜ � ˜ F ( w ) G ( w ) ˜ ˜ H ( w ) K ( w ) logo Blanchini Casagrande Miani Viaro Stable LPV realization for LPV design

Recommend


More recommend