ssvi a la bergomi
play

SSVI a la Bergomi Stefano De Marco 1 , Claude Martini 2 1 Ecole - PowerPoint PPT Presentation

Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi SSVI a la Bergomi Stefano De Marco 1 , Claude Martini 2 1 Ecole Polytechnique 2 Zeliade Systems Jim Gatheral 60th birthday conference 1 / 30 Outline


  1. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi SSVI a la Bergomi Stefano De Marco 1 , Claude Martini 2 1 Ecole Polytechnique 2 Zeliade Systems Jim Gatheral 60th birthday conference 1 / 30

  2. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: 2 / 30

  3. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: Jim’s → Zeliade (ZQF, Model Validation) → Banks, HFs, CCPs 2 / 30

  4. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: Jim’s → Zeliade (ZQF, Model Validation) → Banks, HFs, CCPs ◮ Double Lognormal Model 2 / 30

  5. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: Jim’s → Zeliade (ZQF, Model Validation) → Banks, HFs, CCPs ◮ Double Lognormal Model ◮ Variational Most likely Path 2 / 30

  6. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: Jim’s → Zeliade (ZQF, Model Validation) → Banks, HFs, CCPs ◮ Double Lognormal Model ◮ Variational Most likely Path ◮ SVI 2 / 30

  7. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: Jim’s → Zeliade (ZQF, Model Validation) → Banks, HFs, CCPs ◮ Double Lognormal Model ◮ Variational Most likely Path ◮ SVI ◮ SSVI 2 / 30

  8. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: Jim’s → Zeliade (ZQF, Model Validation) → Banks, HFs, CCPs ◮ Double Lognormal Model ◮ Variational Most likely Path ◮ SVI ◮ SSVI ◮ ..and more to come! 2 / 30

  9. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Foreword To Jim A nice pipeline: Jim’s → Zeliade (ZQF, Model Validation) → Banks, HFs, CCPs ◮ Double Lognormal Model ◮ Variational Most likely Path ◮ SVI ◮ SSVI ◮ ..and more to come! So, Jim, on behalf of Zeliade I say: thank you! 2 / 30

  10. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi SSVI a la Bergomi Stefano De Marco 1 , Claude Martini 2 1 Ecole Polytechnique 2 Zeliade Systems Jim Gatheral 60th birthday conference 3 / 30

  11. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi 4 / 30

  12. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi 1st ingredient: (e)SSVI 5 / 30

  13. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi 6 / 30

  14. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral SVI Formula for the implied total variance at a given maturity T : ( k − m ) 2 + σ 2 ) � v ( k ) = a + b ( ρ ( k − m ) + where: v = implied vol 2 T . k is the log forward moneyness. 7 / 30

  15. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral SVI Formula for the implied total variance at a given maturity T : ( k − m ) 2 + σ 2 ) � v ( k ) = a + b ( ρ ( k − m ) + where: v = implied vol 2 T . k is the log forward moneyness. 5 parameters, calibration not so immediate (Zeliade Quasi Explicit whitepaper, 2009). 7 / 30

  16. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral SVI Formula for the implied total variance at a given maturity T : ( k − m ) 2 + σ 2 ) � v ( k ) = a + b ( ρ ( k − m ) + where: v = implied vol 2 T . k is the log forward moneyness. 5 parameters, calibration not so immediate (Zeliade Quasi Explicit whitepaper, 2009). No arbitrage conditions essentially unknown. 7 / 30

  17. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral SVI Formula for the implied total variance at a given maturity T : ( k − m ) 2 + σ 2 ) � v ( k ) = a + b ( ρ ( k − m ) + where: v = implied vol 2 T . k is the log forward moneyness. 5 parameters, calibration not so immediate (Zeliade Quasi Explicit whitepaper, 2009). No arbitrage conditions essentially unknown. Fits super well (the best 5 parameters model around?). 7 / 30

  18. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral-Jacquier Surface SVI Formula for the implied total variance for the whole surface : w ( k , θ t ) = θ t ( ϕ ( θ t ) k + ρ ) 2 + ¯ � ρ 2 ) 2 (1 + ρϕ ( θ t ) k + where: θ :ATM TV, ρ :(constant) spot vol correlation, ϕ : (function) curvature. k is the log forward moneyness. 8 / 30

  19. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral-Jacquier Surface SVI Formula for the implied total variance for the whole surface : w ( k , θ t ) = θ t ( ϕ ( θ t ) k + ρ ) 2 + ¯ � ρ 2 ) 2 (1 + ρϕ ( θ t ) k + where: θ :ATM TV, ρ :(constant) spot vol correlation, ϕ : (function) curvature. k is the log forward moneyness. Typical shape for ϕ : power law, ϕ ( θ ) = ηθ − λ , 0 ≤ λ ≤ 1 / 2. 8 / 30

  20. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral-Jacquier Surface SVI Formula for the implied total variance for the whole surface : w ( k , θ t ) = θ t ( ϕ ( θ t ) k + ρ ) 2 + ¯ � ρ 2 ) 2 (1 + ρϕ ( θ t ) k + where: θ :ATM TV, ρ :(constant) spot vol correlation, ϕ : (function) curvature. k is the log forward moneyness. Typical shape for ϕ : power law, ϕ ( θ ) = ηθ − λ , 0 ≤ λ ≤ 1 / 2. θ taken directly as a parameter: feature quite unique to SSVI. Unlike Bergomi Variance Swap curve parameterization. 8 / 30

  21. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi Gatheral-Jacquier Surface SVI Formula for the implied total variance for the whole surface : w ( k , θ t ) = θ t ( ϕ ( θ t ) k + ρ ) 2 + ¯ � ρ 2 ) 2 (1 + ρϕ ( θ t ) k + where: θ :ATM TV, ρ :(constant) spot vol correlation, ϕ : (function) curvature. k is the log forward moneyness. Typical shape for ϕ : power law, ϕ ( θ ) = ηθ − λ , 0 ≤ λ ≤ 1 / 2. θ taken directly as a parameter: feature quite unique to SSVI. Unlike Bergomi Variance Swap curve parameterization. (Historically, stems out of SVI. SSVI slices are a subfamily of SVI). 8 / 30

  22. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi No arbitrage in SSVI Proposition (GJ, SSVI paper, Theorems 4.1 and 4.2 ) There is no calendar spread and no butterfly arbitrage if ∂ t θ t ≥ 0 (2.1) 0 ≤ ∂ θ ( θϕ ( θ )) ≤ 1 ρ 2 (1 + ¯ ρ ) ϕ ( θ ) , ∀ θ > 0 (2.2) � � � 4 θ θϕ ( θ ) ≤ min 1 + | ρ | , 2 , ∀ θ > 0 (2.3) 1 + | ρ | � where ¯ ρ = 1 − ρ 2 . Condition 2.3 implies that lim θ → 0 θϕ ( θ ) = 0. 9 / 30

  23. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi SSVI in practice Usage: implied vol smoother, risk models Widely used on Equity (indexes, stocks), works very well Also on some FI and FX markets Easy to implement (calibration easier than SVI) 10 / 30

  24. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi e(xtended) SSVI (joint work with Sebas Hendriks) Idea: allows for time ( θ ) dependent correlation ρ in SSVI. 11 / 30

  25. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi e(xtended) SSVI (joint work with Sebas Hendriks) Idea: allows for time ( θ ) dependent correlation ρ in SSVI. Motivation: correlation in the calibration of a joint slice SSVI model: 11 / 30

  26. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi e(xtended) SSVI eSSVI slices are SSVI slices: same no-butterfly arbitrage conditions. Question: investigate calendar-spread arbitrage. 12 / 30

  27. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi e(xtended) SSVI eSSVI slices are SSVI slices: same no-butterfly arbitrage conditions. Question: investigate calendar-spread arbitrage. Starting point: look at 2 SSVI slices with different correlations ρ 1 , ρ 2 . 12 / 30

  28. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi θ 1 � 1 k 2 + 2 ρ 1 ϕ 1 k + 1) ϕ 2 w 1 = 2 (1 + ρ 1 ϕ 1 k + θ 2 � 2 k 2 + 2 ρ 2 ϕ 2 k + 1) ϕ 2 w 2 = 2 (1 + ρ 2 ϕ 2 k + (2.4) 13 / 30

  29. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi θ 1 � 1 k 2 + 2 ρ 1 ϕ 1 k + 1) ϕ 2 w 1 = 2 (1 + ρ 1 ϕ 1 k + θ 2 � 2 k 2 + 2 ρ 2 ϕ 2 k + 1) ϕ 2 w 2 = 2 (1 + ρ 2 ϕ 2 k + (2.4) [ Haute Couture on parametric quadratic polynomials here] 13 / 30

  30. Outline Reminder on SSVI Chriss-Morokoff-Gatheral-Fukasawa formula SSVI a la Bergomi θ 1 � 1 k 2 + 2 ρ 1 ϕ 1 k + 1) ϕ 2 w 1 = 2 (1 + ρ 1 ϕ 1 k + θ 2 � 2 k 2 + 2 ρ 2 ϕ 2 k + 1) ϕ 2 w 2 = 2 (1 + ρ 2 ϕ 2 k + (2.4) [ Haute Couture on parametric quadratic polynomials here] Proposition (Sufficient conditions for no crossing) The 2 smiles don’t cross if θ 2 ≥ θ 1 and ϕ 2 ≤ ϕ 1 θ 2 ϕ 2 � 1 + ρ 1 , 1 − ρ 1 � ≥ max θ 1 ϕ 1 1 + ρ 2 1 − ρ 2 13 / 30

Recommend


More recommend