spaces on simple closed rectifiable curves in the complex
play

spaces on simple closed rectifiable curves in the complex plane and - PowerPoint PPT Presentation

The closed span of an exponential system in L p spaces on simple closed rectifiable curves in the complex plane and P olya singularity results for Taylor-Dirichlet series Elias Zikkos Cyprus Ministry of Education and Culture New


  1. First Goal: Generalizing The Polya Theorem We consider Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z n =1 k =0 associated to a multiplicity sequence Λ = { λ n , µ n } ∞ n =1 { λ n , µ n } ∞ n =1 := { λ 1 , λ 1 , . . . , λ 1 , λ 2 , λ 2 , . . . , λ 2 , . . . , λ k , λ k , . . . , λ k , . . . } � �� � � �� � � �� � µ 1 − times µ 2 − times µ k − times { λ n } ∞ n =1 is a strictly increasing sequence of positive real numbers AND { µ n } ∞ diverging to infinity, n =1 is a sequence of positive integers, Not Necessarily Bounded. E. Zikkos Short version

  2. First Goal: Generalizing The Polya Theorem We consider Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z n =1 k =0 associated to a multiplicity sequence Λ = { λ n , µ n } ∞ n =1 { λ n , µ n } ∞ n =1 := { λ 1 , λ 1 , . . . , λ 1 , λ 2 , λ 2 , . . . , λ 2 , . . . , λ k , λ k , . . . , λ k , . . . } � �� � � �� � � �� � µ 1 − times µ 2 − times µ k − times { λ n } ∞ n =1 is a strictly increasing sequence of positive real numbers AND { µ n } ∞ diverging to infinity, n =1 is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions: E. Zikkos Short version

  3. First Goal: Generalizing The Polya Theorem We consider Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z n =1 k =0 associated to a multiplicity sequence Λ = { λ n , µ n } ∞ n =1 { λ n , µ n } ∞ n =1 := { λ 1 , λ 1 , . . . , λ 1 , λ 2 , λ 2 , . . . , λ 2 , . . . , λ k , λ k , . . . , λ k , . . . } � �� � � �� � � �� � µ 1 − times µ 2 − times µ k − times { λ n } ∞ n =1 is a strictly increasing sequence of positive real numbers AND { µ n } ∞ diverging to infinity, n =1 is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions: (A) Λ has Density d counting multiplicities E. Zikkos Short version

  4. First Goal: Generalizing The Polya Theorem We consider Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z n =1 k =0 associated to a multiplicity sequence Λ = { λ n , µ n } ∞ n =1 { λ n , µ n } ∞ n =1 := { λ 1 , λ 1 , . . . , λ 1 , λ 2 , λ 2 , . . . , λ 2 , . . . , λ k , λ k , . . . , λ k , . . . } � �� � � �� � � �� � µ 1 − times µ 2 − times µ k − times { λ n } ∞ n =1 is a strictly increasing sequence of positive real numbers AND { µ n } ∞ diverging to infinity, n =1 is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions: (A) Λ has Density d counting multiplicities n Λ ( t ) � lim = d < ∞ , n Λ ( t ) = µ n t t →∞ λ n ≤ t E. Zikkos Short version

  5. First Goal: Generalizing The Polya Theorem We consider Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z n =1 k =0 associated to a multiplicity sequence Λ = { λ n , µ n } ∞ n =1 { λ n , µ n } ∞ n =1 := { λ 1 , λ 1 , . . . , λ 1 , λ 2 , λ 2 , . . . , λ 2 , . . . , λ k , λ k , . . . , λ k , . . . } � �� � � �� � � �� � µ 1 − times µ 2 − times µ k − times { λ n } ∞ n =1 is a strictly increasing sequence of positive real numbers AND { µ n } ∞ diverging to infinity, n =1 is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions: (A) Λ has Density d counting multiplicities n Λ ( t ) � lim = d < ∞ , n Λ ( t ) = µ n t t →∞ λ n ≤ t (if µ n = 1 for all n ∈ N then n /λ n → d ) E. Zikkos Short version

  6. First Goal: Generalizing The Polya Theorem We consider Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z n =1 k =0 associated to a multiplicity sequence Λ = { λ n , µ n } ∞ n =1 { λ n , µ n } ∞ n =1 := { λ 1 , λ 1 , . . . , λ 1 , λ 2 , λ 2 , . . . , λ 2 , . . . , λ k , λ k , . . . , λ k , . . . } � �� � � �� � � �� � µ 1 − times µ 2 − times µ k − times { λ n } ∞ n =1 is a strictly increasing sequence of positive real numbers AND { µ n } ∞ diverging to infinity, n =1 is a sequence of positive integers, Not Necessarily Bounded. We impose two conditions: (A) Λ has Density d counting multiplicities n Λ ( t ) � lim = d < ∞ , n Λ ( t ) = µ n t t →∞ λ n ≤ t (if µ n = 1 for all n ∈ N then n /λ n → d ) ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . E. Zikkos Short version

  7. Region of Convergence, Taylor-Dirichlet series: E. Zikkos Short version

  8. Region of Convergence, Taylor-Dirichlet series: Assuming (A) and (B) then Λ = { λ n , µ n } ∞ n =1 satisfies log n µ n lim = 0 lim = 0 . λ n λ n n →∞ n →∞ E. Zikkos Short version

  9. Region of Convergence, Taylor-Dirichlet series: Assuming (A) and (B) then Λ = { λ n , µ n } ∞ n =1 satisfies log n µ n lim = 0 lim = 0 . λ n λ n n →∞ n →∞ Valiron (1929) : E. Zikkos Short version

  10. Region of Convergence, Taylor-Dirichlet series: Assuming (A) and (B) then Λ = { λ n , µ n } ∞ n =1 satisfies log n µ n lim = 0 lim = 0 . λ n λ n n →∞ n →∞ Valiron (1929) : consider the series � µ n − 1 � ∞ � � c n , k z k e λ n z , g ( z ) = C n = max {| c n , k | : k = 0 , 1 , 2 , . . . , µ n − 1 } n =1 k =0 log C n lim sup = ξ ∈ R , P − ξ := { z : ℜ z < − ξ } . λ n n →∞ E. Zikkos Short version

  11. Region of Convergence, Taylor-Dirichlet series: Assuming (A) and (B) then Λ = { λ n , µ n } ∞ n =1 satisfies log n µ n lim = 0 lim = 0 . λ n λ n n →∞ n →∞ Valiron (1929) : consider the series � µ n − 1 � ∞ � � c n , k z k e λ n z , g ( z ) = C n = max {| c n , k | : k = 0 , 1 , 2 , . . . , µ n − 1 } n =1 k =0 log C n lim sup = ξ ∈ R , P − ξ := { z : ℜ z < − ξ } . λ n n →∞ Then g ( z ) is an analytic function in the left half-plane P − ξ converging uniformly on compact subsets. E. Zikkos Short version

  12. Region of Convergence, Taylor-Dirichlet series: Assuming (A) and (B) then Λ = { λ n , µ n } ∞ n =1 satisfies log n µ n lim = 0 lim = 0 . λ n λ n n →∞ n →∞ Valiron (1929) : consider the series � µ n − 1 � ∞ � � c n , k z k e λ n z , g ( z ) = C n = max {| c n , k | : k = 0 , 1 , 2 , . . . , µ n − 1 } n =1 k =0 log C n lim sup = ξ ∈ R , P − ξ := { z : ℜ z < − ξ } . λ n n →∞ Then g ( z ) is an analytic function in the left half-plane P − ξ converging uniformly on compact subsets. We call the line ℜ z = − ξ the abscissa of convergence for g ( z ). E. Zikkos Short version

  13. Region of Convergence, Taylor-Dirichlet series: Assuming (A) and (B) then Λ = { λ n , µ n } ∞ n =1 satisfies log n µ n lim = 0 lim = 0 . λ n λ n n →∞ n →∞ Valiron (1929) : consider the series � µ n − 1 � ∞ � � c n , k z k e λ n z , g ( z ) = C n = max {| c n , k | : k = 0 , 1 , 2 , . . . , µ n − 1 } n =1 k =0 log C n lim sup = ξ ∈ R , P − ξ := { z : ℜ z < − ξ } . λ n n →∞ Then g ( z ) is an analytic function in the left half-plane P − ξ converging uniformly on compact subsets. We call the line ℜ z = − ξ the abscissa of convergence for g ( z ). Question : E. Zikkos Short version

  14. Region of Convergence, Taylor-Dirichlet series: Assuming (A) and (B) then Λ = { λ n , µ n } ∞ n =1 satisfies log n µ n lim = 0 lim = 0 . λ n λ n n →∞ n →∞ Valiron (1929) : consider the series � µ n − 1 � ∞ � � c n , k z k e λ n z , g ( z ) = C n = max {| c n , k | : k = 0 , 1 , 2 , . . . , µ n − 1 } n =1 k =0 log C n lim sup = ξ ∈ R , P − ξ := { z : ℜ z < − ξ } . λ n n →∞ Then g ( z ) is an analytic function in the left half-plane P − ξ converging uniformly on compact subsets. We call the line ℜ z = − ξ the abscissa of convergence for g ( z ). Question : is it True that in every interval having length greater than 2 π d on the line ℜ z = − ξ , the series has at least One singularity? E. Zikkos Short version

  15. Positive Answers to the Singularity Question E. Zikkos Short version

  16. Positive Answers to the Singularity Question Suppose that Λ = { λ n , µ n } satisfies � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . E. Zikkos Short version

  17. Positive Answers to the Singularity Question Suppose that Λ = { λ n , µ n } satisfies � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ◮ Zikkos (2005 Complex Variables): E. Zikkos Short version

  18. Positive Answers to the Singularity Question Suppose that Λ = { λ n , µ n } satisfies � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ◮ Zikkos (2005 Complex Variables): If Λ belongs to a certain class denoted by U ( d , 0), with a restriction on the coefficients, the answer is YES. E. Zikkos Short version

  19. Positive Answers to the Singularity Question Suppose that Λ = { λ n , µ n } satisfies � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ◮ Zikkos (2005 Complex Variables): If Λ belongs to a certain class denoted by U ( d , 0), with a restriction on the coefficients, the answer is YES. ◮ O. A. Krivosheeva (2012 St. Petersburg Math. J. ): E. Zikkos Short version

  20. Positive Answers to the Singularity Question Suppose that Λ = { λ n , µ n } satisfies � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ◮ Zikkos (2005 Complex Variables): If Λ belongs to a certain class denoted by U ( d , 0), with a restriction on the coefficients, the answer is YES. ◮ O. A. Krivosheeva (2012 St. Petersburg Math. J. ): If the Krivosheev characteristic S Λ is Equal to 0, E. Zikkos Short version

  21. Positive Answers to the Singularity Question Suppose that Λ = { λ n , µ n } satisfies � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ◮ Zikkos (2005 Complex Variables): If Λ belongs to a certain class denoted by U ( d , 0), with a restriction on the coefficients, the answer is YES. ◮ O. A. Krivosheeva (2012 St. Petersburg Math. J. ): If the Krivosheev characteristic S Λ is Equal to 0, then the answer is YES. E. Zikkos Short version

  22. Another Positive Answer ◮ Zikkos (2018): E. Zikkos Short version

  23. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, E. Zikkos Short version

  24. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. E. Zikkos Short version

  25. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : E. Zikkos Short version

  26. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : (1) If (A) and (B) hold and µ n = O (1), then Λ ∈ U ( d , 0). E. Zikkos Short version

  27. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : (1) If (A) and (B) hold and µ n = O (1), then Λ ∈ U ( d , 0). (2) Let { p n } be the prime numbers E. Zikkos Short version

  28. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : (1) If (A) and (B) hold and µ n = O (1), then Λ ∈ U ( d , 0). (2) Let { p n } be the prime numbers and let µ n = p n +1 − p n . E. Zikkos Short version

  29. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : (1) If (A) and (B) hold and µ n = O (1), then Λ ∈ U ( d , 0). (2) Let { p n } be the prime numbers and let µ n = p n +1 − p n . Then Λ = { p n , µ n } belongs to the class U (1 , 0). E. Zikkos Short version

  30. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : (1) If (A) and (B) hold and µ n = O (1), then Λ ∈ U ( d , 0). (2) Let { p n } be the prime numbers and let µ n = p n +1 − p n . Then Λ = { p n , µ n } belongs to the class U (1 , 0). Theorem The Taylor-Dirichlet series � µ n − 1 � ∞ � � z k e p n z , g ( z ) = c n , k ∈ C n =1 k =0 defines an analytic function in the half-plane { z : ℜ z < 0 } E. Zikkos Short version

  31. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : (1) If (A) and (B) hold and µ n = O (1), then Λ ∈ U ( d , 0). (2) Let { p n } be the prime numbers and let µ n = p n +1 − p n . Then Λ = { p n , µ n } belongs to the class U (1 , 0). Theorem The Taylor-Dirichlet series � µ n − 1 � ∞ � � z k e p n z , g ( z ) = c n , k ∈ C n =1 k =0 defines an analytic function in the half-plane { z : ℜ z < 0 } and it has at least One singularity E. Zikkos Short version

  32. Another Positive Answer ◮ Zikkos (2018): If Λ belongs to the class U ( d , 0), then the Krivosheev characteristic S Λ = 0, hence the answer is YES. Examples in U ( d , 0) : (1) If (A) and (B) hold and µ n = O (1), then Λ ∈ U ( d , 0). (2) Let { p n } be the prime numbers and let µ n = p n +1 − p n . Then Λ = { p n , µ n } belongs to the class U (1 , 0). Theorem The Taylor-Dirichlet series � µ n − 1 � ∞ � � z k e p n z , g ( z ) = c n , k ∈ C n =1 k =0 defines an analytic function in the half-plane { z : ℜ z < 0 } and it has at least One singularity in every open interval of length exceeding 2 π and lying on the Imaginary axis. E. Zikkos Short version

  33. A Negative Answer E. Zikkos Short version

  34. A Negative Answer Zikkos ( Ufa Math J.): E. Zikkos Short version

  35. A Negative Answer Zikkos ( Ufa Math J.): for every d ≥ 0, E. Zikkos Short version

  36. A Negative Answer Zikkos ( Ufa Math J.): for every d ≥ 0, there exists a multiplicity sequence Λ = { λ n , µ n } with µ n → ∞ , such that E. Zikkos Short version

  37. A Negative Answer Zikkos ( Ufa Math J.): for every d ≥ 0, there exists a multiplicity sequence Λ = { λ n , µ n } with µ n → ∞ , such that � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . E. Zikkos Short version

  38. A Negative Answer Zikkos ( Ufa Math J.): for every d ≥ 0, there exists a multiplicity sequence Λ = { λ n , µ n } with µ n → ∞ , such that � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ( C ) S Λ < 0 E. Zikkos Short version

  39. A Negative Answer Zikkos ( Ufa Math J.): for every d ≥ 0, there exists a multiplicity sequence Λ = { λ n , µ n } with µ n → ∞ , such that � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ( C ) S Λ < 0 and hence (Krivosheeva 2012 St. Petersburg Math. J.): E. Zikkos Short version

  40. A Negative Answer Zikkos ( Ufa Math J.): for every d ≥ 0, there exists a multiplicity sequence Λ = { λ n , µ n } with µ n → ∞ , such that � λ n ≤ t µ n ( A ) Λ has Density d : lim = d < ∞ , t t →∞ ( B ) λ n +1 − λ n > c > 0 , ( Uniformly Separated ) . ( C ) S Λ < 0 and hence (Krivosheeva 2012 St. Petersburg Math. J.): there exists a Taylor-Dirichlet series such that it Can be Continued Analytically across the abscissa of convergence. E. Zikkos Short version

  41. The class U ( d , 0) E. Zikkos Short version

  42. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : E. Zikkos Short version

  43. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . E. Zikkos Short version

  44. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . Choose two positive numbers α < 1 , δ < c . E. Zikkos Short version

  45. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . Choose two positive numbers α < 1 , δ < c . For each term a n consider the closed disk B ( a n , | a n | α ) = { z : | z − a n | ≤ a α n } . E. Zikkos Short version

  46. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . Choose two positive numbers α < 1 , δ < c . For each term a n consider the closed disk B ( a n , | a n | α ) = { z : | z − a n | ≤ a α n } . Choose a point in B ( a n , | a n | α ) ∩ R , call it b n , in an almost arbitrary way, E. Zikkos Short version

  47. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . Choose two positive numbers α < 1 , δ < c . For each term a n consider the closed disk B ( a n , | a n | α ) = { z : | z − a n | ≤ a α n } . Choose a point in B ( a n , | a n | α ) ∩ R , call it b n , in an almost arbitrary way, such that for all n � = m either ( I ) b m = b n E. Zikkos Short version

  48. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . Choose two positive numbers α < 1 , δ < c . For each term a n consider the closed disk B ( a n , | a n | α ) = { z : | z − a n | ≤ a α n } . Choose a point in B ( a n , | a n | α ) ∩ R , call it b n , in an almost arbitrary way, such that for all n � = m either ( I ) b m = b n or ( II ) | b m − b n | ≥ δ. E. Zikkos Short version

  49. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . Choose two positive numbers α < 1 , δ < c . For each term a n consider the closed disk B ( a n , | a n | α ) = { z : | z − a n | ≤ a α n } . Choose a point in B ( a n , | a n | α ) ∩ R , call it b n , in an almost arbitrary way, such that for all n � = m either ( I ) b m = b n or ( II ) | b m − b n | ≥ δ. Rename { b n } into Λ = { λ n , µ n } . E. Zikkos Short version

  50. The class U ( d , 0) Zikkos (2005 Complex Variables, 2010 CMFT) : Consider a strictly increasing sequence { a n } of positive real numbers, having density d with uniformly separated terms n / a n → d , a n +1 − a n > c > 0 . Choose two positive numbers α < 1 , δ < c . For each term a n consider the closed disk B ( a n , | a n | α ) = { z : | z − a n | ≤ a α n } . Choose a point in B ( a n , | a n | α ) ∩ R , call it b n , in an almost arbitrary way, such that for all n � = m either ( I ) b m = b n or ( II ) | b m − b n | ≥ δ. Rename { b n } into Λ = { λ n , µ n } . Then we say that Λ ∈ U ( d , 0). E. Zikkos Short version

  51. The Class U ( d , 0) E. Zikkos Short version

  52. The Class U ( d , 0) a n

  53. The Class U ( d , 0) a n R = a α n

  54. The Class U ( d , 0) b n a n R = a α n

  55. The Class U ( d , 0) b n a n a n +1 R = a α n

  56. The Class U ( d , 0) b n a n a n +1 R = a α R = a α n n +1

  57. The Class U ( d , 0) b n b n +1 a n a n +1 R = a α R = a α n n +1

  58. The Class U ( d , 0) b n b n +1 a n a n +1 a n +2 R = a α R = a α n n +1

  59. The Class U ( d , 0) b n b n +1 a n a n +1 a n +2 R = a α n +2 R = a α R = a α n n +1

  60. The Class U ( d , 0) b n = b n +2 b n +1 a n a n +1 a n +2 R = a α n +2 R = a α R = a α n n +1

  61. The Class U ( d , 0) b n = b n +2 b n +1 a n a n +1 a n +2 a n +3 R = a α n +2 R = a α R = a α n n +1

  62. The Class U ( d , 0) b n = b n +2 b n +1 a n a n +1 a n +2 a n +3 R = a α n +3 R = a α n +2 R = a α R = a α n n +1

  63. The Class U ( d , 0) b n = b n +2 = b n +3 b n +1 a n a n +1 a n +2 a n +3 R = a α n +3 R = a α n +2 R = a α R = a α n n +1 E. Zikkos Short version

  64. Singularities of Taylor-Dirichlet series E. Zikkos Short version

  65. Singularities of Taylor-Dirichlet series Theorem A Let the multiplicity-sequence Λ = { λ n , µ n } ∞ n =1 belong to the class U ( d , 0) for some d > 0 , and consider the Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z , g ( z ) = c n , k ∈ C n =1 k =0 log C n lim sup = ξ ∈ R , where C n = max {| c n , k | : k = 0 , 1 , . . . , µ n − 1 } . λ n n →∞ E. Zikkos Short version

  66. Singularities of Taylor-Dirichlet series Theorem A Let the multiplicity-sequence Λ = { λ n , µ n } ∞ n =1 belong to the class U ( d , 0) for some d > 0 , and consider the Taylor-Dirichlet series � µ n − 1 � ∞ � � c n , k z k e λ n z , g ( z ) = c n , k ∈ C n =1 k =0 log C n lim sup = ξ ∈ R , where C n = max {| c n , k | : k = 0 , 1 , . . . , µ n − 1 } . λ n n →∞ Then g ( z ) defines an analytic function in the half-plane { z : ℜ z < − ξ } and it has at least One singularity in every open interval of length exceeding 2 π d and lying on the line ℜ z = − ξ . E. Zikkos Short version

  67. Second Goal E. Zikkos Short version

  68. Second Goal Given Λ = { λ n , µ n } ∞ n =1 in U ( d , 0) E. Zikkos Short version

  69. Second Goal Given Λ = { λ n , µ n } ∞ n =1 in U ( d , 0) Characterize the closed span of the exponential system E Λ = { z k e λ n z : n ∈ N , k = 0 , 1 , . . . , µ n − 1 } E. Zikkos Short version

  70. Second Goal Given Λ = { λ n , µ n } ∞ n =1 in U ( d , 0) Characterize the closed span of the exponential system E Λ = { z k e λ n z : n ∈ N , k = 0 , 1 , . . . , µ n − 1 } in L p ( l ) spaces where l is a simple closed rectifiable curve in C , and G l is the domain bounded by the curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Zikkos Short version

  71. Second Goal Given Λ = { λ n , µ n } ∞ n =1 in U ( d , 0) Characterize the closed span of the exponential system E Λ = { z k e λ n z : n ∈ N , k = 0 , 1 , . . . , µ n − 1 } in L p ( l ) spaces where l is a simple closed rectifiable curve in C , and G l is the domain bounded by the curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If f is in the closed span of E Λ in L p ( l ), E. Zikkos Short version

  72. Second Goal Given Λ = { λ n , µ n } ∞ n =1 in U ( d , 0) Characterize the closed span of the exponential system E Λ = { z k e λ n z : n ∈ N , k = 0 , 1 , . . . , µ n − 1 } in L p ( l ) spaces where l is a simple closed rectifiable curve in C , and G l is the domain bounded by the curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If f is in the closed span of E Λ in L p ( l ), then f is in the L p closure of polynomials, E. Zikkos Short version

  73. Second Goal Given Λ = { λ n , µ n } ∞ n =1 in U ( d , 0) Characterize the closed span of the exponential system E Λ = { z k e λ n z : n ∈ N , k = 0 , 1 , . . . , µ n − 1 } in L p ( l ) spaces where l is a simple closed rectifiable curve in C , and G l is the domain bounded by the curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If f is in the closed span of E Λ in L p ( l ), then f is in the L p closure of polynomials, hence f ∈ E p ( G l ). E. Zikkos Short version

  74. Curve l is surrounded by a rectangle whose height is less than 2 π d E. Zikkos Short version

  75. Curve l is surrounded by a rectangle whose height is less than 2 π d Height < 2 π d Theorem B Suppose the Domain G l bounded by the curve l is a Smirnov domain. E. Zikkos Short version

  76. Curve l is surrounded by a rectangle whose height is less than 2 π d Height < 2 π d Theorem B Suppose the Domain G l bounded by the curve l is a Smirnov domain. Suppose also that Λ = { λ n , µ n } has Density d. E. Zikkos Short version

  77. Curve l is surrounded by a rectangle whose height is less than 2 π d Height < 2 π d Theorem B Suppose the Domain G l bounded by the curve l is a Smirnov domain. Suppose also that Λ = { λ n , µ n } has Density d. Then the closed span of the exponential system E Λ in the space L p ( l ) for p ≥ 1 E. Zikkos Short version

  78. Curve l is surrounded by a rectangle whose height is less than 2 π d Height < 2 π d Theorem B Suppose the Domain G l bounded by the curve l is a Smirnov domain. Suppose also that Λ = { λ n , µ n } has Density d. Then the closed span of the exponential system E Λ in the space L p ( l ) for p ≥ 1 Coincides with the Smirnov space E p ( G l ) . E. Zikkos Short version

  79. Proof It is enough to show that E p ( G l ) is a subspace of the closed span of the exponential system E Λ in L p ( l ). E. Zikkos Short version

  80. Proof It is enough to show that E p ( G l ) is a subspace of the closed span of the exponential system E Λ in L p ( l ). Since G l is a Smirnov domain we have to show that the L p closure of polynomials is a subspace of the closed span of the exponential system E Λ in L p ( l ). E. Zikkos Short version

  81. Proof It is enough to show that E p ( G l ) is a subspace of the closed span of the exponential system E Λ in L p ( l ). Since G l is a Smirnov domain we have to show that the L p closure of polynomials is a subspace of the closed span of the exponential system E Λ in L p ( l ). Let H ( K ) be the space of functions analytic in the rectangle K with the topology of uniform convergence on compact subsets. E. Zikkos Short version

  82. Proof It is enough to show that E p ( G l ) is a subspace of the closed span of the exponential system E Λ in L p ( l ). Since G l is a Smirnov domain we have to show that the L p closure of polynomials is a subspace of the closed span of the exponential system E Λ in L p ( l ). Let H ( K ) be the space of functions analytic in the rectangle K with the topology of uniform convergence on compact subsets. ( B. Ya. Levin , A. F. Leont’ev): E. Zikkos Short version

  83. Proof It is enough to show that E p ( G l ) is a subspace of the closed span of the exponential system E Λ in L p ( l ). Since G l is a Smirnov domain we have to show that the L p closure of polynomials is a subspace of the closed span of the exponential system E Λ in L p ( l ). Let H ( K ) be the space of functions analytic in the rectangle K with the topology of uniform convergence on compact subsets. ( B. Ya. Levin , A. F. Leont’ev): Since the density of Λ is d , E. Zikkos Short version

Recommend


More recommend