solving semidefinite programs for packing problems frank
play

Solving semidefinite programs for packing problems Frank Vallentin - PowerPoint PPT Presentation

Solving semidefinite programs for packing problems Frank Vallentin University of Cologne, Germany Maria Dostert (Cologne), Cristob al Guzm an (Santiago de Chile), David de Laat (CWI), Fernando Oliveira (Sa o Paulo) partially supported


  1. Solving semidefinite programs for packing problems Frank Vallentin University of Cologne, Germany Maria Dostert (Cologne), Cristob´ al Guzm´ an (Santiago de Chile), David de Laat (CWI), Fernando Oliveira (Sa˜ o Paulo) partially supported by

  2. 1. Introduction

  3. Densest packings different spheres tetrahedra equal spheres M&Ms Applications: information theory, materials science

  4. Rich history Hilbert’s 18th problem Arrange most densely equal solids of a given form, e.g. spheres, regular tetrahedra Extremely difficult solved by Hales (1998, 2014) n = 3 : Viazovska et al. (2016) n = 8 , 24 : n = 4 , 5 , . . . : best upper bounds by de Laat, Oliveira, Vallentin (2014) Conjecture (Torquato, Jiao, 2009): “Kepler’s conjecture for the 21st century” wide open, maximum density between 0 . 85 and 1 − 10 − 26 Densest packings of centrally symmetric Platonic, Archimedean solids, and of l p -unit balls are given by the corresponding lattice packings (Chen, Engel, Glotzer (2010), Gravel, Elser, Kallus (2011))

  5. 2. Methods

  6. Independent sets in Cayley graphs 3 Cayley ( Z / 5 Z , { 1 , 4 } ) Cayley ( G, Σ ) ⇒ x − y ∈ Σ x ∼ y ⇐ 4 2 Abelian group Σ ⊆ G, Σ = − Σ undirected graph on G 0 1 I ✓ G independent: 8 x, y 2 I, x 6 = y, x 6⇠ y find indep. sets in Cayley ( G, Σ ) which are as “large” as possible G finite: α ( G ) = max {| I | : I independent } K ⊆ R n centrally symmetric convex body G infinite: G = R n , Σ = K � α (Cayley( R n , Σ )) = maximal density of packing of translates of 1 2 K

  7. Complete SDP proof system polynomial optimization formulation 3 Cayley ( Z / 5 Z , { 1 , 4 } ) α ( G ) = max P i ∈ V x i 4 2 x i ≥ 0 x 2 i − x i = 0 for i ∈ V x i x j = 0 if ij ∈ E 0 1 apply Lasserre’s hierarchy for polynomial optimization

  8. First step of Lasserre’s hierarchy 3 α ( G ) = max P i ∈ V x i Cayley ( Z / 5 Z , { 1 , 4 } ) x i ≥ 0 x 2 i − x i = 0 for i ∈ V 4 2 x i x j = 0 if ij ∈ E 0 1 ≤ max y 0 + y 1 + y 2 + y 3 + y 4 y ∅ = 1 , y 0 , y 1 , y 2 , y 3 , y 4 ≥ 0   y ∅ y 0 y 1 y 2 y 3 y 4 0 0 y 0 y 0 y 02 y 03     0 0 y 1 y 1 y 13 y 14   ⌫ 0   0 0 y 2 y 02 y 2 y 24     0 0 y 3 y 03 y 13 y 3   0 0 y 4 y 14 y 24 y 4 ? linearize x i x j to y ij ✓ ◆ y ∅ y i ) 1 · y i � y 2 ) y 2 ⌫ 0 = i = i � y i  0 ? y i y i first step = ϑ 0 ( G ) ?

  9. t -th step of Lasserre’s hierarchy n X o y { x } : y 2 R I 2 t las t ( G ) = max ≥ 0 , y ∅ = 1 , M t ( y ) ⌫ 0 , x ∈ V I 2 t = independent sets with ≤ 2 t elements ( if J ∪ J 0 ∈ I 2 t , y J [ J 0 ( M t ( y )) J,J 0 = moment matrix 0 otherwise. ∅ 1 2 3 12 13 23   ∅ y ∅ y 1 y 2 y 3 y 12 y 13 y 23 1 y 1 y 1 y 12 y 13 y 12 y 13 y 123     2 y 2 y 12 y 2 y 23 y 12 y 123 y 23     3 y 3 y 13 y 23 y 3 y 123 y 13 y 23     12 y 12 y 12 y 12 y 123 y 12 y 123 y 123     13 y 13 y 13 y 123 y 13 y 123 y 13 y 123   y 23 y 123 y 23 y 23 y 123 y 123 y 23 23

  10. Properties of Lasserre’s hierarchy the t -th step las t ( G ) is a semidefinite program ? ? SDP proof system is complete: (Laurent, 2003) ϑ 0 ( G ) = las 1 ( G ) ≥ las 2 ( G ) ≥ . . . ≥ las α ( G ) ( G ) = α ( G ) every intermediate step gives rigorous upper bound can be generalized to infinite graphs ?

  11. Complete SDP proof system for infinite graphs (de Laat, Vallentin, 2015) need topological assumptions Graph G = ( V, E ) is a topological packing graph if V is a Hausdorff topological space ? every finite clique is contained in a clique which is open ? n X o y { x } : y 2 R I 2 t las t ( G ) = max ≥ 0 , y ∅ = 1 , M t ( y ) ⌫ 0 , x ∈ V n o λ ( I =1 ) : λ ∈ M ( I 2 t ) � 0 , λ ( { ∅ } ) = 1 , A ⇤ t λ ∈ M ( I t × I t ) ⌫ 0 las t ( G ) = sup . Borel measure SDP proof system complete if G compact top. packing graph

  12. 3. Explicit Computations

  13. Lasserre’s first step / Lov´ asz ϑ α ( G )  ϑ ( G ) = max h J, A i A 2 R V × V is positive semidefinite , h I, A i = 1 A ( x, y ) = 0 for all { x, y } 2 E . = min M is positive semidefinite , B � J B ( x, x ) = M for all x 2 V , B ( x, y ) = 0 for all { x, y } 62 E where x 6 = y, M 2 R , B 2 R V × V is symmetric. ? exhibiting feasible solution for dual gives rigorous bound

  14. Exercise: Computing ϑ ( C 5 ) 3 ϑ ( G ) = min M 4 2 B � J is positive semidefinite , B ( x, x ) = M for all x 2 V , B ( x, y ) = 0 for all { x, y } 62 E where x 6 = y, 0 1 M 2 R , B 2 R V × V is symmetric. C 5 = Cayley( Z / 5 Z , { 1 , 4 } ) ϑ ( C 5 ) = min M is positive semidefinite , B − J   0 0 M b 01 b 04 0 0 b 01 M b 12     0 0 B = b 12 M b 23     0 0 b 23 M b 34   0 0 b 04 b 34 M

  15. Exploiting cyclic symmetry 3   0 0 0 0 1 1 0 0 0 0   4 2   C = 0 1 0 0 0     0 0 1 0 0   0 1 0 0 0 1 0 C 5 = Cayley( Z / 5 Z , { 1 , 4 } ) cyclic permutation matrix If B is feasible, then also C T BC (with same objective value):   M b 12 b 01 0 0   M b 01 b 04 0 0 b 12 M b 23 0 0 b 01 M b 12 0 0     C T BC =   b 23 M b 34   0 0 B = b 12 M b 23 0 0       b 34 M b 04   0 0 0 0 b 23 M b 34     b 01 b 04 M 0 0 b 04 b 34 M 0 0 consider group average: 0 1 0 0 M b b 0 0 b M b 4 B C 1 ( C k ) T BC k = X B C 0 0 b M b B C 5 B C 0 0 b M b k =0 @ A 0 0 b b M b = 1 5( b 01 + b 12 + b 23 + b 34 + b 04 )

  16. Circulant matrices 4 1 ( C k ) T ( B − J ) C k = circ( M − 1 , b − 1 , − 1 , − 1 , b − 1) X 5 k =0 Y = circ( y 0 , y 1 , . . . , y n − 1 ) = ( Y rs ) r,s = ( y s − r ) r,s ∈ C n × n   y 0 y 1 . . . y n − 1 y n − 1 y 0 . . . y n − 2     =   ... ... ... ...   y 1 y 2 . . . y 0 Practically every matrix theoretic question for circulants can be solved in closed form. e.g. eigenvalues and eigenvectors ) T ∈ C n χ a = ( ω − a · 0 , ω − a · 1 , . . . , ω − a · ( n − 1) ω n = e 2 π i/n n n n a = 0 , . . . , n − 1 are eigenvectors

  17. Eigenvalues are discrete Fourier coefficients Y = circ( y 0 , y 1 , . . . , y n − 1 ) = ( Y rs ) r,s = ( y s − r ) r,s ∈ C n × n   y 0 y 1 . . . y n − 1 ω n = e 2 π i/n y n − 1 y 0 . . . y n − 2     = ) T ∈ C n χ a = ( ω − a · 0 , ω − a · 1 , . . . , ω − a · ( n − 1)   ... ... ... ...   n n n y 1 y 2 . . . y 0 a = 0 , . . . , n − 1 n − 1 X ( Y χ a ) r = y s − r ω − a · s n s =0 n − 1 X y s − r ω − a · ( s − r ) = ω − a · r n n s =0 n − 1 X = ω − a · r y s ω − a · s n n s =0 y ( a ) = P n − 1 = ω − a · r y ( a ) b s =0 y ( s ) e − 2 π ias/n where b n

  18. 3 Back to ϑ ( C 5 ) 4 2 ϑ ( C 5 ) = min M 0 1 circ( y 0 , y 1 , y 2 , y 3 , y 4 ) is positive semidefinite , with y = ( M − 1 , b − 1 , − 1 , − 1 , b − 1) . y (0) = M + 2 b − 5 ≥ 0 ⇐ ⇒ M + 2 b ≥ 5 b X 4 ω − 1 · k y (1) = M + ω − 1 · 1 b + ω − 1 · 4 b b − n n n k =0 = M + b (cos( − 2 π / 5) + i sin( − 2 π / 5) + cos( − 8 π / 5) + i (sin − 8 π / 5)) = M + 2 b cos( − 2 π / 5) ≥ 0 y (2) = M + 2 b cos( − 4 π / 5) ≥ 0 b y (3) = b y (2) , y (4) = b y (1) b b LP with 2 variables and 3 constraints optimum at b y (0) = b y (2) √ M = 5

  19. √ ϑ ( C 5 ) = 5 ?

  20. Proof generalizes in many ways for other cyclic graphs: ϑ 0 (Cayley( Z /n Z , Σ )) = min y 0 y (0) � n, b b y ( a ) � 0 , a = 1 , . . . , n � 1 , n − 1 X y i  0 if i 62 Σ . y s e − 2 π is · a/n y ( a ) = b s =0 for infinite Cayley graphs on Abelian groups: G = R n , Σ = K � α (Cayley( R n , K � )) = maximal density of packing of translates of 1 / 2 K ≤ ϑ 0 (Cayley( R n , K � )) = min f (0) f ( a ) � 0 , a 2 R n \ { 0 } , b b f (0) � vol 1 2 K , f ( x )  0 if x 62 K � . where f ∈ L 1 ( R n ) and continuous Z b R n f ( x ) e − 2 π ix · a dx f ( a ) = Cohn-Elkies (2003)

  21. Infinite dimensional linear program α (Cayley( R n , K � )) ≤ ϑ 0 (Cayley( R n , K � )) = min f (0) f ( a ) � 0 , a 2 R n \ { 0 } , b b f (0) � vol 1 2 K , f ( x )  0 if x 62 K � . where f ∈ L 1 ( R n ) and continuous approximate by semi-infinite linear program optimize over polynomials p ∈ R [ u 1 , . . . , u n ] ≤ 2 d and set b f ( u ) = p ( u ) e � π k u k 2 R n p ( u ) e � π k u k 2 du α ( Cayley ( G, K � ))  inf R p 2 R [ u ]  2 d p (0) � vol 1 2 K p ( u ) � 0 for all u 2 R n \ { 0 } R n p ( u ) e � π k u k 2 e 2 π iu · x du  0 for all x 62 K � R

Recommend


More recommend