solo dwarf galaxy survey exploring dwarfs in the local
play

Solo Dwarf Galaxy Survey: Exploring dwarfs in the Local Group Clare - PowerPoint PPT Presentation

Solo Dwarf Galaxy Survey: Exploring dwarfs in the Local Group Clare Higgs PhD Supervisor: Alan McConnachie August 1, 2019 Solo Collaboration: higgs@uvic.ca M. Irwin, N. Annau, N. Bate, G. Lewis, @astrohigglet M. Walker, P . Ct, K. Venn,


  1. Solo Dwarf Galaxy Survey: Exploring dwarfs in the Local Group Clare Higgs PhD Supervisor: Alan McConnachie August 1, 2019 Solo Collaboration: higgs@uvic.ca M. Irwin, N. Annau, N. Bate, G. Lewis, @astrohigglet M. Walker, P . Côté, K. Venn, G. Battaglia

  2. Local Group and a little beyond. Low mass. M V >-18 ➡ Inside 3 Mpc. NEARBY ISOLATED DWARF GALAXIES Not within the virial radius of a large galaxy ➡ More than 300 kpc from M31 and the Milky Way

  3. Why … DWARF GALAXIES ‣ Sensitive probes of galaxy formation and evolution Why … NEARBY ‣ Resolved stellar populations Why … ISOLATED ‣ Intrinsic properties of low mass galaxies Solitary Local (Solo) Dwarf Galaxy Survey

  4. Solo Observations Name Alt. Name RA Dec. Distance E ( B − V ) Tel. Filt. [kpc] [Mags.] 00 h 01 m 58 . 2 s − 15 o 27 0 39” WLM DDO221 933 ± 34 0.030 M gi C gi 00 h 02 m 14 . 5 s +45 o 05 0 20” AndXVIII 1355 ± 81 0.102 C gi 00 h 15 m 31 . 6 s − 32 o 10 0 48” ESO410-G005 KK98 1923 ± 35 0.013 M ugi 00 h 26 m 11 . 0 s − 11 o 02 0 40” Cetus 755 ± 24 0.038 M gi C g 00 h 26 m 33 . 4 s − 41 o 51 0 19” ESO294-G010 2032 ± 37 0.013 M g i 01 h 04 m 47 . 8 s +02 o 07 0 04” IC1613 DDO8 755 ± 42 0.030 M ugi C gi 02 h 24 m 44 . 4 s − 73 o 30 0 51” KKs3 2120 ± 70 0.045 M gi 03 h 01 m 22 . 8 s +40 o 59 0 17” Perseus 785 ± 65 0.062 C 03 h 44 m 21 . 1 s − 43 o 32 0 00” Eridanus II 785 ± 65 M 03 h 59 m 48 . 3 s +67 o 08 0 19” UGCA86 2960 ± 232 0.918 C gi ▸ Nearby (<3 Mpc) 07 h 00 m 29 . 3 s − 04 o 12 0 30” HIZSS3A(B) 1675 ± 108 0.046 M ugi C g 09 h 16 m 02 . 2 s +52 o 50 0 24” UGC4879 1361 ± 25 0.215 C gi 09 h 34 m 53 . 4 s +17 o 03 0 05” LeoT 417 ± 19 0.037 C gi 09 h 48 m 56 . 1 s − 25 o 59 0 24” Antlia B 1294 ± 99 C g ▸ Isolated (>300 kpc from MW/M31) 09 h 59 m 26 . 5 s +30 o 44 0 47” LeoA 798 ± 44 0.055 C gi 10 h 00 m 00 . 1 s +05 o 19 0 56” SextansB 1426 ± 20 0.034 C gi 10 h 03 m 06 . 9 s − 26 o 09 0 35” NGC3109 DDO236 1300 ± 48 0.013 M ugi 10 h 04 m 04 . 1 s − 27 o 19 0 52” Antlia 1349 ± 62 0.011 M gi 10 h 11 m 00 . 8 s − 04 o 41 0 34” SextansA DDO75 1432 ± 53 0.046 M ugi ▸ Wide field imaging (u), g & i 10 h 21 m 45 . 1 s +18 o 05 0 17” LeoP 1620 ± 150 0.090 C gi 11 h 50 m 53 . 0 s +38 o 52 0 49” DDO99 2590 ± 167 0.053 C ig 12 h 12 m 09 . 1 s +36 o 10 0 09” NGC4163 2860 ± 39 0.050 C gi 12 h 18 m 46 . 0 s − 79 o 43 0 34” IC3104 2270 ± 188 0.065 M ugi 12 h 14 m 57 . 9 s +36 o 13 0 08” DDO113 2950 ± 82 0.049 C gi 12 h 27 m 40 . 9 s +43 o 29 0 44” DDO125 2580 ± 59 0.091 C gi ▸ CFHT MegaCam, Magellan Megacam 12 h 58 m 40 . 4 s +14 o 13 0 03” GR8 DDO155 2178 ± 120 0.066 M gi 13 h 30 m 44 . 4 s +54 o 54 0 36” UGC8508 2580 ± 36 0.227 C gi 13 h 54 m 33 . 5 s +04 o 14 0 35” and Magellan IMACS KKH86 2590 ± 190 0.053 M ugi 14 h 07 m 10 . 5 s +35 o 03 0 37” KKR3 2188 ± 121 0.047 C gi 14 h 15 m 56 . 5 s +23 o 03 0 19” UGC9128 2291 ± 42 0.038 C g 14 h 24 m 43 . 4 s +44 o 31 0 33” DDO190 2790 ± 93 0.100 C gi 16 h 13 m 48 . 0 s +54 o 22 0 16” KKR25 1905 ± 61 0.345 C gi 17 h 47 m 08 . 8 s − 64 o 38 0 30” IC4662 2440 ± 191 0.020 M gi 19 h 29 m 59 . 0 s − 17 o 40 0 51” SagDIG 1067 ± 88 0.019 C ugi 19 h 44 m 56 . 6 s − 14 o 47 0 21” NGC6822 DDO209 459 ± 17 0.018 C ugi 19 h 44 m 56 . 6 s − 14 o 47 0 21” Phoenix 415 ± 19 0.010 M ugi 20 h 46 m 51 . 8 s − 12 o 50 0 53” DDO210 Aquarius 1072 ± 39 0.026 M ugi C ugi 22 h 02 m 41 . 5 s − 51 o 17 0 47” IC5152 1950 ± 45 0.016 M ugi 22 h 32 m 41 . 2 s +31 o 12 0 58” 661 +152 AndXXVIII 0.051 C ugi � 61 22 h 40 m 43 . 9 s − 30 o 47 0 59” KK258 2230 ± 50 0.011 M gi 22 h 41 m 49 . 6 s − 64 o 25 0 10” Tucana 887 ± 49 0.024 M ugi 23 h 26 m 27 . 5 s − 32 o 23 0 20” UKS2323-326 UGCA438 2208 ± 92 0.021 M ugi 23 h 28 m 36 . 3 s +14 o 44 0 35” PegDIG DDO216 920 ± 30 0.061 C ugi 23 h 45 m 34 . 0 s +38 o 43 0 04” KKH98 2523 ± 105 0.053 C ugi

  5. Why … DWARF GALAXIES ‣ Sensitive probes of galaxy formation and evolution Why … NEARBY ‣ Resolved stellar populations Why … ISOLATED ‣ Intrinsic properties of low mass galaxies Why … HOMOGENEOUS ‣ Need to minimize systematics

  6. Local Group Subsample Alt. Names: WLM = DDO 221 UGC 4879 = VV 124 IC 1613 = DDO 8 distance to M31 DDO 210 = Aquarius NGC 6822 = DDO 209 Peg DIG =DDO 216 McConnachie 2012

  7. Solo Dwarfs IC 1613 Leo T Sag DIG WLM Perseus Leo A 0.5°

  8. Solo Dwarfs Full field of view IC 1613 Leo T Sag DIG WLM Perseus Leo A 0.5°

  9. Analysis Techniques Resolved Stars Integrated Light Pros: Pros: Reveals faint and extended Describe the central ▸ ▸ stellar populations. regions well. Mass weighted rather than Colour profiles ▸ ▸ luminosity weighted. Can study the fainter old ▸ Combine both! RGB population. Kinematic tracers often RGB ▸ Cons: stars. Dominated by younger ▸ Cons: stellar populations. Incompleteness due to ▸ Heavily contaminated by ▸ Crowding in the central part foreground and Radial profiles are not in ▸ background sources. “conventional” units.

  10. Resolved Stars in Nearby Dwarfs

  11. Resolved Stars in Nearby Dwarfs

  12. Extended Radial Profiles Surface Brightness Combine resolved stellar ▸ profiles with integrated light profiles in the i band . The g band is used in dwarfs ▸ with no visible integrated i band. Combine with parameter ▸ � . γ RGB Radius

  13. Extended Radial Profiles Surface Brightness Similar “wings” observed by Bellazzini et al. 2018. Radius

  14. Comparisons with Literature Values Comparisons to values compiled by McConnachie 2012

  15. Preliminary! Trends/Future Work How does shape or size vary with distance? ▸ Indicative of tidal effects ▸ Trends with star formation histories? ▸ Reshaping due to internal processes ▸ Comparison to MW or M31 satellites, dwarfs ▸ in Fornax, M101 etc. External environmental effects ▸

  16. Trends/Future Work Preliminary! Martin et al. 2018 Martin et al. 2018 find ultra faint MW satellites are increasingly flatter ▸ with decreasing luminosity. We find the brighter Solo dwarfs are more elliptical in general ▸

  17. Exploring γ RGB � describes the fraction ▸ γ RGB of i band light resulting from the RGB stars. Dependent on spatially ▸ resolved star formation Larger fraction history, metallicity, age - from RGB stars metallicity relation, dust reddening… Redder

  18. Summary Uniform and homogenous analysis of nearby isolated dwarf galaxies near the ▸ Local Group. Generate extended radial profiles to faint surface brightness limits. ▸ Study dwarfs collectively and individually. ▸ Clare Higgs higgs@uvic.ca @astrohigglet

Recommend


More recommend