soft and rigid impact
play

Soft and rigid impact Amabile Tatone Dipartimento di Ingegneria - PowerPoint PPT Presentation

Soft and rigid impact Amabile Tatone Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno Universit` a dellAquila - Italy 1st International Conference on Computational Contact Mechanics Lecce, Italy, Sept. 16-18, 2009


  1. Soft and rigid impact Amabile Tatone Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno Universit` a dell’Aquila - Italy 1st International Conference on Computational Contact Mechanics Lecce, Italy, Sept. 16-18, 2009 Tatone Soft and rigid impact

  2. Based on a joint work with: Alessandro Contento and Angelo Di Egidio Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno Universit` a dell’Aquila - Italy Tatone Soft and rigid impact

  3. References ◮ Alessandro Granaldi, Paolo Decuzzi, The dynamic response of resistive microswitches: switching time and bouncing, J. Micromech. Microeng. , 16, 2006. ◮ Z. J. Guo, N. E. McGruer, G. G. Adams, Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch, J. Micromech. Microeng. , 17, 2007 Tatone Soft and rigid impact

  4. A toy model for contact simulations Contact between a body and a rigid flat support ◮ rigid body ◮ affine body (homogeneous deformations) ◮ contractile affine body Tatone Soft and rigid impact

  5. Contact force constitutive laws Repulsive force: q r ( x , t ) = α r d ( x , t ) − ν r n Damping force: q d ( x , t ) = − β d d ( x , t ) − ν d ( n ⊗ n ) ˙ p ( x , t ) Frictional force: q f ( x , t ) = − β f d ( x , t ) − ν f ( I − n ⊗ n ) ˙ p ( x , t ) Adhesive force: q a ( x , t ) = − β a ( d ( x , t ) − ν aa − d ( x , t ) − ν ar ) n Tatone Soft and rigid impact

  6. Contact force constitutive laws q repulsive force repulsive + adhesive forces repulsive + adhesive forces d ν r = 8 , ν aa = 3 , ν ar = 6 Tatone Soft and rigid impact

  7. Contact force constitutive laws n o d ( x , t ) d ( x , t ) := ( p ( x , t ) − o ) · n Tatone Soft and rigid impact

  8. Contact force constitutive laws n o d 0 d ( x , t ) := ( p ( x , t ) − o ) · n Tatone Soft and rigid impact

  9. Rigid block Tatone Soft and rigid impact

  10. Rigid disk Tatone Soft and rigid impact

  11. Numerical simulations (rigid body) 001 011 R 002 012 L d L d R θ t t Tatone Soft and rigid impact

  12. Numerical simulations (rigid body) rocking on a sloping plane spinning top 3D-101 3D-111 021 022 023 3D-102 3D-112 bouncing dice throwing 031 3D-201 3D-211 rolling 3D-202 3D-212 032 033 034 035 adhesion and detachment 501 502 503 505 Tatone Soft and rigid impact

  13. Affine body F = ∇ p Tatone Soft and rigid impact

  14. Affine body The motion of a body B is described at each time t by a transplacement p ( · , t ) defined on the reference shape D : p : D × I → E characterized by the following representation: p ( x , t ) = p 0 ( t ) + ∇ p ( t )( x − x 0 ) where ∇ p ( t ) : V → V is a tensor such that det ∇ p ( t ) > 0. An affine velocity field v at time t has the representation: v ( x ) = v 0 + ∇ v ( x − x 0 ) Along a motion at time t v 0 = ˙ p 0 ( t ) , ∇ v = ∇ ˙ p ( t ) Tatone Soft and rigid impact

  15. Affine body Balance principle: � � b ( x , t ) · v dV + q ( x , t ) · v dA − S ( t ) · ∇ v vol( D ) = 0 , ∀ v D ∂ D Balance equations: − m ¨ p 0 ( t ) − m g + f ( t ) = 0 −∇ ¨ p ( t ) J + M ( t ) − S ( t ) vol( D ) = 0 Tatone Soft and rigid impact

  16. Mass and Euler tensor: � m := ρ dV D � J := ρ ( x − x 0 ) ⊗ ( x − x 0 ) dV D Total force and moment tensor: � f ( t ) := q ( x , t ) dA ∂ D � M ( t ) := ( x − x 0 ) ⊗ q ( x , t ) dA ∂ D Tatone Soft and rigid impact

  17. Material constitutive characterization Frame indifference: skw SF T = 0 S · W F = 0 ∀ W | sym W = 0 ⇒ Dissipation inequality: F − d S · ˙ dt ϕ ( F ) ≥ 0 Reduced dissipation inequality: S + F T · ˙ FF − 1 ≥ 0 S + := S − � S ( F ) Tatone Soft and rigid impact

  18. Material constitutive characterization Hyperelastic stress: F = d ϕ ( F ) S ( F ) · ˙ � dt Mooney-Rivlin strain energy (incompressible material): ϕ ( F ) := c 1 ( ı 1 ( C ) − 3) + c 2 ( ı 2 ( C ) − 3) . � � ı 2 ( C ) := 1 tr( C ) 2 − tr( C 2 ) ı 1 ( C ) := tr ( C ) , . 2 Tatone Soft and rigid impact

  19. Material constitutive characterization Reduced dissipation inequality: S + F T · ˙ FF − 1 ≥ 0 S + := S − � S ( F ) The simplest way to satisfy a-priori the dissipation inequality: S + F T = µ sym ( ˙ FF − 1 ) , µ ≥ 0 Stress response (dissipative + energetic + reactive): FF − 1 )( F T ) − 1 + � S = µ sym ( ˙ S 0 ( F ) − π ( F T ) − 1 Tatone Soft and rigid impact

  20. Contact forces Surface forces per unit deformed area: � q ( x , t ) = q j ( x , t ) k ( x , t ) j Area change factor: k ( x , t ) := �∇ p ( t ) − T n ∂ D ( x ) � det ∇ p ( t ) n ∂ D ( x ) outward unit normal vector Tatone Soft and rigid impact

  21. Numerical simulations (elastic body) elastic bouncing, rolling and oscillations 041 112 200 214 215 216 217 318 319 Tatone Soft and rigid impact

  22. Affine contractile body ∇ p G F Tatone Soft and rigid impact

  23. Affine contractile body ∇ p G F Kr¨ oner-Lee decomposition: F ( t ) := ∇ p ( t ) G ( t ) − 1 Contraction velocity: V = ˙ GG − 1 Tatone Soft and rigid impact

  24. Affine contractile body Balance principle: � � b ( x , t ) · v dV + q ( x , t ) · v dA − S ( t ) · ∇ v vol( D ) D ∂ D � � + Q ( t ) · V − A ( t ) · V vol( D ) = 0 , ∀ ( v , V ) Balance equations: − m ¨ p 0 ( t ) − m g + f ( t ) = 0 −∇ ¨ p ( t ) J + M ( t ) − S ( t ) vol( D ) = 0 Q ( t ) − A ( t ) = 0 Tatone Soft and rigid impact

  25. Material constitutive characterization Frame indifference: skw S ∇ p T = 0 S · W ∇ p = 0 ∀ W | sym W = 0 ⇒ Dissipation inequality: � � p − d GG − 1 + S · ∇ ˙ A · ˙ ϕ ( F ) det G ≥ 0 dt Tatone Soft and rigid impact

  26. Material constitutive characterization Reduced dissipation inequality: S + ∇ p T · ˙ FF − 1 + A + · ˙ GG − 1 ≥ 0 S + := S − � A + := A + F T SG T − (det G ) ϕ ( F ) I S ( F ) , Hyperelastic stress: F = d ϕ ( F ) S ( F ) G T · ˙ � dt Tatone Soft and rigid impact

  27. Material constitutive characterization The simplest way to satisfy a-priori the dissipation inequality: S + ∇ p T = µ sym ( ˙ FF − 1 ) , µ ≥ 0 A + = µ γ ˙ GG − 1 , µ γ ≥ 0 Stress characterization: FF − 1 )( ∇ p T ) − 1 + � S = µ sym ( ˙ S 0 ( F ) − π ( ∇ p T ) − 1 � � GG − 1 − F T SG T − (det G ) ϕ ( F ) I A = µ γ ˙ Tatone Soft and rigid impact

  28. Material constitutive characterization Equations of motion: − m ¨ p 0 − m g + f = 0 −∇ ¨ p J + M − S vol( D ) = 0 GG − 1 = F T SG T − (det G ) ϕ ( F ) I + Q µ γ ˙ Tatone Soft and rigid impact

  29. Numerical simulations (contractile body) oscillating driving Q 12g1 12g2 12g3 Tatone Soft and rigid impact

  30. Numerical simulations (contractile body) oscillating driving G Tatone Soft and rigid impact

  31. Numerical simulations (contractile body) oscillating driving G Tatone Soft and rigid impact

  32. References ◮ Simo J.C., Wriggers P. and Taylor R.L., “A perturbed Lagrangian formulation for the finite element solution of contact problems,” Comp. Methods Appl. Mech. Engrg. , 51 , 163–180 (1985). ◮ Wriggers-Za Wriggers P. and Zavarise G., “Chapter 6, Computational Contact Mechanics,” in Encyclopedia of Computational Mechanics , Stein E., de Borst R., Hughes T.J.R., editors, John Wiley & Sons (2004). Tatone Soft and rigid impact

  33. References ◮ Di Carlo A. and Quiligotti S., “Growth and Balance,” Mech. Res. Comm. , 29 , 449–456 (2002). ◮ Di Carlo A., “Surface and bulk growth unified,” in Mechanics of Material Forces , Steinmann P. and Maugin G. A., editors, Springer, New York, 53–64 (2005). ◮ Nardinocchi P. and Teresi L., “On the active response of soft living tissues,” J. Elasticity , 88 , 27–39 (2007). Tatone Soft and rigid impact

  34. Supplementary references ◮ Gianfranco Capriz, Paolo Podio-Guidugli, Whence the boundary conditions in modern continuum physics?, Atti Convegni Lincei n. 210 , 2004 ◮ Antonio Di Carlo, Actual surfaces versus virtual cuts, Atti Convegni Lincei n. 210 , 2004 Tatone Soft and rigid impact

Recommend


More recommend