snargs for p and more from poly secure pir
play

SNARGs for P, and more, from poly-secure PIR Justin Holmgren Joint - PowerPoint PPT Presentation

1 SNARGs for P, and more, from poly-secure PIR Justin Holmgren Joint work with Zvika Brakerski and Yael Kalai 1 With RAM efficiency for the prover Verifiable Computation: What we want Common Reference String Hey! f(x) = y. Heres a


  1. 1 SNARGs for P, and more, from poly-secure PIR Justin Holmgren Joint work with Zvika Brakerski and Yael Kalai 1 With RAM efficiency for the prover

  2. Verifiable Computation: 
 What we want Common Reference String Hey! f(x) = y. Here’s a proof I believe you Computationally 
 bounded

  3. What’s Known Assumptions Result random oracle/ 
 holy grail knowledge super-polynomial 
 two-message 
 assumptions or iO schemes Moreover, RAM efficiency standard 
 public key+1 message, 
 Our Result LWE secret verification key

  4. Soundness: Non-Interactive RAM P.P.T. wins negligibly often Delegation Worker Client pk 1 λ pk,vk Gen( ) ← DB d=Digest(DB) DB M,x y,d’ M DB (x) ← M,x,y,d’,pf Verify(M,d,x,y,d’,pf) Accept? Adversarial Worker: • Adaptively chooses DB, M, x, y, d’, and pf • Wins if M DB (x) y,d’ and Verify accepts 6!

  5. Theorem For simplicity, 
 assume FHE Assume standard LWE. More generally, any succinct PIR suffices Then there is a non-interactive RAM delegation scheme.

  6. 
 Aiello-Bhat-Ostrovsky- 
 Scheme Overview [ABOR00] Rajagopalan ‘00 MIP Verifier q 1 q k … Construct stronger MIP? 
 Prover 0 Prover 1 Prover k Sound if answers Statistical No-Signaling [KRR14] generated locally a k a 1 M,x,y,d’ Non-Interactive Delegation Encrypted with 
 independent FHE keys q 0 1 , . . . , q 0 Consider alternate 
 k q 1 , . . . , q k Construct stronger FHE? 
 a 0 1 , . . . , a 0 with responses k Guarantees Worker Client • “Spooky-free” [DHRW16]) q 1 = q 0 a 1 ≈ c a 0 answers are If then 1 1 M, x, y, d 0 , a 1 , . . . , a k • “homomorphism- q S = q 0 a S ≈ c a 0 If then S S no-signaling extractable” [BC12]

  7. Family of MIP-based schemes FHE Strength MIP Strength More Crypto Spooky-Free Local Moreover, MIP Super-poly 
 Statistical 
 is adaptive IND-CPA No-Signaling This Computational 
 More MIP IND-CPA No-Signaling Work

  8. MIP Overview Redo [KRR14] and more 1 . Lemma: “local soundness” distribution For any T-time which claims (Pr[win] > ) P ∗ M DB ( x ) → y, d 0 ✏ T-step tableau we can 
 Locally 
 construct 
 consistent Assign P ∗ : algorithm V A Any V | V | ≤ k Distributed like 
 Claim: P*’s successes M DB ( x ) → y, d 0 Our focus today 2 . Lemma: local soundness implies soundness.

  9. Kalai- 
 Tableau for RAMs [KP15] Paneth 15 local 
 Check initial = Variables: constraints digest = d Check initial Machine 
 Mem 
 state = q 0 Digest Merkle Proof state Op (for all adj. layers) 
 Layer 1 Check Merkle Layer 2 proofs, check state … transition Layer t Check final Check final output = y digest = d’ poly ( λ )

  10. Local to global Claim Assign P ∗ With probability ✏ M DB ( x ) → y, d 0 M DB ( x ) 6! y, d 0 Assign P ∗ = queries to Variables By hybrid argument, For some i… Merkle 
 Machine 
 Mem 
 Merkle Proof root state Op Layer 1 M.q 0 d Layer 2 … y d’ Layer t

  11. Local to global Claim Assign P ∗ M DB ( x ) → y, d 0 With probability ✏ M DB ( x ) 6! y, d 0 Assign P ∗ = queries to Variables By hybrid argument, For some i… Merkle 
 Machine 
 Mem 
 Merkle Proof root state Op M.q 0 d Layer i Correct with prob ✏ /t Layer i+1 Incorrect y d’

  12. Local to global Claim Assign P ∗ M DB ( x ) → y, d 0 With probability ✏ M DB ( x ) 6! y, d 0 Assign P ∗ = queries to Variables By hybrid argument, For some i… Merkle 
 Machine 
 Mem 
 Merkle Proof root state Op M.q 0 d Locally 
 Layer i Correct with prob ✏ /t Consistent Layer i+1 Incorrect y d’ Hash 
 Collision!

  13. 
 Application: 
 NP Delegation running time 
 L = { x : ∃ w s.t. R L ( x, w ) } |x| + |w| Prover Verifier With modifications, 
 pk, vk ← Gen (1 λ ) pk Can prove many x’s x,w “for the price of one” For deterministic 
 x,w, proof that computations R L ( x, w ) = 1 | x | + | w | + poly ( λ ) Optimal communication* Soundness follows [Gentry-Wichs] deterministic 
 from deterministic computation adaptive soundness * from falsifiable assumptions

  14. Thanks

Recommend


More recommend