single photon timing resolution in digital silicon
play

Single-Photon Timing Resolution in Digital Silicon Photomultipliers - PowerPoint PPT Presentation

Single-Photon Timing Resolution in Digital Silicon Photomultipliers E. Venialgo 1 , J.-F. Pratte 2 , S. Brunner 3 , and E. Charbon 4 1 Applied Quantum Architectures department, Delft University of Technology, Delft, Netherlands. 2 Department of


  1. Single-Photon Timing Resolution in Digital Silicon Photomultipliers E. Venialgo 1 , J.-F. Pratte 2 , S. Brunner 3 , and E. Charbon 4 1 Applied Quantum Architectures department, Delft University of Technology, Delft, Netherlands. 2 Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada. 3 Radiation Science & Technology department, Delft University of Technology, Delft, The Netherlands. 4 Advanced Quantum Architecture Laboratory, EPFL, Lausanne, Switzerland. 1

  2. Main objective of this talk Discuss and propose a standardization methods for SPTR measurements in Digital SiPMs 2

  3. Outline • Definition of SPTR • Digital SiPM architectures • Setup examples • Parameters and standardization • Conclusions 3

  4. Single-Photon Timing Resolution “The timing response of a SiPM is represented as a statistical distribution characterized by its precision, accuracy, and bin size (LSB)” 4

  5. Single-Photon Timing Resolution “The timing response of a SiPM is represented as a statistical distribution characterized by its precision, accuracy, and bin size (LSB)” accuracy 5

  6. Single-Photon Timing Resolution “The timing response of a SiPM is represented as a statistical distribution characterized by its precision, accuracy, and bin size (LSB)” precision 6

  7. Single-Photon Timing Resolution “The timing response of a SiPM is represented as a statistical distribution characterized by its precision, accuracy, and bin size (LSB)” bin size (LSB) 7

  8. Conditions and techniques • Single-photon light level • Uniform illumination over the sensitive area • TCSPC measurement technique 8

  9. SPTR impact on applications (PET) 511 keV Gamma Photon SCINTILLATOR D-SiPM 9

  10. SPTR impact on applications (PET) 511 keV Gamma Photon Q : total photoelectrons T r : rise time T d : decay time  : SPTR SCINTILLATOR D-SiPM 10

  11. SPTR impact on applications (PET) 511 keV Gamma Photon Q : total photoelectrons T r : rise time T d : decay time  : SPTR SCINTILLATOR D-SiPM 11

  12. SPTR impact on applications (PET) 511 keV Gamma Photon Q : total photoelectrons T r : rise time T d : decay time  : SPTR SCINTILLATOR D-SiPM SORTING PROCESS 12

  13. Digital SiPM architectures 13

  14. Digital SiPM concepts digital photon counter (DPC) 6400 SPADs TDC 1 time stamp T. Frach et al., NSSMIC 2009 14

  15. Digital SiPM concepts digital photon counter (DPC) Multichannel digital SiPM (MD-SiPM) 26x16 6400 SPADs SPADs 48 TDC TDC 1 time stamp 48 individual time stamps T. Frach et al., NSSMIC 2009 S. Mandai et al., NSSMIC 2012 15

  16. Digital SiPM concepts 3D digital SiPM (3DdSiPM) digital photon counter (DPC) Multichannel digital SiPM (MD-SiPM) 26x16 6400 SPADs SPADs 1 SPAD per TDC 48 TDC TDC 1 time stamp 48 individual time stamps N individual time stamps S. Mandai et al., NSSMIC 2012 Pratte et al. 3DIC-IEEE 2010 T. Frach et al., NSSMIC 2009 16

  17. Digital Photon Counter (DPC) T. Frach et al., NSSMIC 2009 • each die has 4 pixels • two TDCs per die • 4 sub-pixels • 3200 or 6400 SPADs per pixel • programmable trigger and validation logic • individual SPAD cell masking S. Brunner et al., JINST 2016 circuitry 17 • TDC bin size: 24 ps

  18. 9x18 Array of MD-SiPMs 26x16 26x16 26x16 26x16 26x16 SPADs SPADs SPADs SPADs SPADs 9 x 18 26x16 26x16 26x16 26x16 26x16 Pixels SPADs SPADs SPADs SPADs MD-SiPMs 26x16 26x16 26x16 26x16 26x16 SPADs SPADs SPADs SPADs SPADs 432 TDCs 18

  19. 9x18 Array of MD-SiPMs PVTB High Voltage Generator architectural overview 9x18 MD-SiPM Array  a 2D 9x18 MD-SiPM array.  9 TDC banks with each having 48 TDCs.. Decoder  configuration memory and masking MD-SiPM: registers. 16x26 SPADs  readout logic and discriminator. 48 timing/energy lines Refs. Smart Reset Decision Logic Masking / Energy Calculation Augusto Carimatto; Shingo Mandai; Config 48x9 Column-parallel TDC Matrix Esteban Venialgo; Ting Gong; Giacomo Serializer / IOs Borghi; Dennis R. Schaart; Edoardo Charbon. ISSCC, 2015 19

  20. 3D digital SiPM 3D Integration Pratte et al. 3DIC-IEEE 2010 • high fill factor • heterogeneous technologies integration Teledyne Dalsa Custom process TSMC CMOS 65 nm 256 SPAD readout ASIC 20

  21. Digital SiPM overview SPAD QC TDC SPAD QC TDC Pratte et al. 3DIC-IEEE 2010 Channel Channel 256 Pixels SPAD QC TDC SPAD QC TDC Channel Channel Out 1 Array Readout Out 2 A) Calibration and correction Post-processing Out 3 B) Timestamp sorting C) Dark count filter Out 4 Out 5 D) Multi-photon estimation 21

  22. Setup examples 22

  23. Typical setup (MD-SiPM) picosecond Laser • power • repetition rate • wavelength • pulse width (40 ps) Advaced laser diode systems. EIG1000 AF. Head : PiL040F, 405 nm, SANYO laser diode DL- 23 5146-152

  24. Typical setup (MD-SiPM) optical interface • NDF • diffuser 24

  25. Typical setup (MD-SiPM) MD-SiPM • bias voltage • temperature • DCR • ...... 25

  26. Typical setup (MD-SiPM) readout FPGA • CLK source • STOP/START • ML507 Xilinx, Virtex-5 • human data [XCM-206Z]Xilinx Spartan-6 FGG676 • custom Microsemi AGL1000V2− CS281 board 26

  27. Typical setup (MD-SiPM) acquisition computer • KDE • measurement error • calibration procedures • custom USB-2.0 interface • ethernet 1Gbps • matlab/Linux 27

  28. Typical setup (MD-SiPM) fan NDF diffuser MD-SiPM + readout picosecond laser head PC interface synchronization signal 28

  29. SPTR measurement MD-SiPM • excess bias voltage • timing line settings S. Mandai, PhD. Thesis, TU-Delft ,2014 29

  30. Sherbrooke’s SPTR setup optical table two 2x6' tables one 2x8' table high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved Jean-Francois.Pratte@USherbrooke.ca 30

  31. Sherbrooke’s SPTR setup SP- Mai Tai Ultrafast Ti-Sapphire Laser pulse width : < 100 fs repetition rate : 80 MHz wavelength : 690 - 1040 nm average power : 3.0 W high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved Jean-Francois.Pratte@USherbrooke.ca 31

  32. Sherbrooke’s SPTR setup SP- Optical Parametric Oscillator pulse width : < 100 fs repetition rate : 80 MHz wavelength : 345 - 2500nm average power : 100 mW - 1.0 W high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved Jean-Francois.Pratte@USherbrooke.ca 32

  33. Sherbrooke’s SPTR setup variable attenuator high power optics glen polarizer 1/2 wave plate beam dump high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved Jean-Francois.Pratte@USherbrooke.ca 33

  34. Sherbrooke’s SPTR setup reference PIN diode Becker & Hickl PHD-400 200 ps rise time high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved Jean-Francois.Pratte@USherbrooke.ca 34

  35. Sherbrooke’s SPTR setup high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved free space beam propagation Jean-Francois.Pratte@USherbrooke.ca 35 high-end Newport mirrors for ultrafast laser

  36. Sherbrooke’s SPTR setup high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved beam conditioning setup Jean-Francois.Pratte@USherbrooke.ca iris, shutter, filter, beam splitter, focusing optics 36

  37. Sherbrooke’s SPTR setup high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved sample fixture - automated XYZ-axis stage 37 Jean-Francois.Pratte@USherbrooke.ca - manual tilt, yaw and rotation axis

  38. Sherbrooke’s SPTR setup output signals SMA cable (ref diode and DUT) oscilloscope - LeCroy SDA 6000A 20 GS/s, 6 GHz - Keysight MSOX91304A 80 GS/s, 13 GHz high power PIN att. OPO Mai Tai low power Beam DUT Scope photon starved Jean-Francois.Pratte@USherbrooke.ca 38

  39. Beam conditioning setup - laser input for SPTR measurements - neutral density filters (photon starved) - beam focusing (down to ~2um spot size) - XYZ motorized stage (array sweep, ~1um step) Jean-Francois.Pratte@USherbrooke.ca 39 39

  40. Sherbrooke’s SPTR setup Jean-Francois.Pratte@USherbrooke.ca 40

  41. Typical SPTR acquisition A SPAD SPTR acquisition • time delay between the SPAD output (pink) and the ref. signal (blue) • histogram building (100k events) • FWHM extract 2 2 2 𝜏 mesured = 𝜏 setup + 𝜏 detector Setup jitter • PIN ref diode pulse to pulse jitter • include electronic jitter (SMA, scope) • include Mai T ai / OPO pulse to pulse jitter (negligible) • Value : 3-4 ps FWHM Jean-Francois.Pratte@USherbrooke.ca 41

  42. SPAD + front-end SPTR SPAD • TSMC 65 nm • SPAD implemented for test purpose (and fun) Front-end • 20 µm diameter SPTR: 8.9 ps FWHM 42 Jean-Francois.Pratte@USherbrooke.ca

  43. DPC SPTR (measurement setup) S. Brunner et al., JINST 2016 43

  44. DPC SPTR (results) S. Brunner et al., JINST 2016 44

  45. DPC SPTR (results) Temperature ºC S. Brunner et al., JINST 2016 45

  46. DPC SPTR (results) Active area S. Brunner et al., JINST 2016 46

  47. DPC SPTR (results) Masking level S. Brunner et al., JINST 2016 47

  48. Parameters and standardization 48

Recommend


More recommend