simple cells
play

Simple Cells Thurs. Jan. 25, 2018 1 Recall last lecture: DOG - PowerPoint PPT Presentation

COMP 546 Lecture 5 Orientation Selection 1: Simple Cells Thurs. Jan. 25, 2018 1 Recall last lecture: DOG (lateral inhibition), cross correlation image - - + - - - DOG 2 Example: an edge image ,


  1. COMP 546 Lecture 5 Orientation Selection 1: Simple Cells Thurs. Jan. 25, 2018 1

  2. Recall last lecture: DOG (lateral inhibition), β€œcross correlation” image - - + - - - DOG 2

  3. Example: an edge image 𝐽 𝑦, 𝑧 𝐽 𝑦 𝑦 3

  4. Example: an edge image - - + - - - - - - - + + - - - - - - 𝐽 𝑦, 𝑧 - - + - - - DOG - - + - - - - - + - - - 𝐸𝑃𝐻 ⨂ 𝐽 𝑦, 𝑧 𝑦 4

  5. Mach Bands Are they the result of lateral inhibition in the retina ? 5

  6. ASIDE: Mach bands are well known problem for interpreting x-ray images. Very subtle changes in dark-bright must be detected and the visual system is often fooled. 6

  7. Retinal ganglion cells encode image differences : β€’ spectral (wavelength l ) , β€œchromatic” β€’ spatial (x,y) β€’ temporal (t) -- will cover this next week β€’ spectral-spatial ( l, x, y) - Assignment 1 β€’ spectral-spatio-temporal ( l, x, y, t) - omit 7

  8. Assignment 1 R+ G- R+ G- R- G+ Single opponent cells Double opponent cells 8

  9. Early visual pathway: retina to cortex (V1) Lateral geniculate nucleus (LGN) 9

  10. Left visual field Right visual field (LGN) 10

  11. Polar coordinates on the retina Vertical meridian Horizontal meridian 11

  12. Retinotopic Map retina Definition: Cells in a visual area are spatially arranged in a retinotopic map if physically adjacent cells in that area have adjacent receptive fields (and hence encode image in adjacent regions of the retina) Some visual area in the brain e.g. LGN, V1 12

  13. retina Layers 3, 4, 5, 6 LGN (small receptive fields, color opponency) Layers 1 and 2 (bigger receptive fields time dependent, no color opponency) V1 13

  14. Polar coordinates in primary visual cortex (V1) - right visual field - 14

  15. functional magnetic resonance imaging (fMRI) 15

  16. What do cells in V1 encode ? (Hubel & Wiesel 1959) The moving slide (see 35 sec and on...) http://www.youtube.com/watch?v=IOHayh06LJ4 3 minutes of exploration: https://www.youtube.com/watch?v=Cw5PKV9Rj3o 16

  17. β€œSimple Cell” Temporal effects to be discussed in lecture 7 17

  18. V1 Orientation Tuning Curve 18

  19. retina LGN V1 - - - - - - + - - - + - - - - + + - - - - - - - - - + - - - - + - - - - - - R+ G- Hubel and Wiesel R- G+ suggested this mechanism for elongated receptive field profile of V1 simple cell 19

  20. Model of orientation selectivity in V1 - + - - + β€œLine Detector” β€œ Edge Detector ” - + - - + (even) (odd) - + - - + - + - - + 𝑀 = 𝑔 𝑦 βˆ’ 𝑦 0 , 𝑧 βˆ’ 𝑧 𝐽 𝑦, 𝑧 0 𝑦,𝑧 Cell centered at 𝑦 0 , 𝑧 0 20

  21. Cell response model: half-wave rectification Response (spike rate) 𝑀 Quasi-linear : cell response is linear over some range. 21

  22. 𝑀 How to encode the negative values of ? (similar idea to last lecture) + - + - + - Line Detector + - + - + - (even) + - + - + - + - + - + - - + + - - + + - Edge Detector - + + - (odd) - + + - 22

  23. β€œGabor” function: classical model of simple cell Line (even) Edge (odd) 23

  24. 1D Cosine Gabor π‘‘π‘π‘‘π‘—π‘œπ‘“ 𝐻𝑏𝑐𝑝𝑠 π‘‘π‘π‘‘π‘—π‘œπ‘“ βˆ— = π»π‘π‘£π‘‘π‘‘π‘—π‘π‘œ 24

  25. 1D Sine Gabor π‘‘π‘—π‘œπ‘“ 𝐻𝑏𝑐𝑝𝑠 π‘‘π‘—π‘œπ‘“ βˆ— = π»π‘π‘£π‘‘π‘‘π‘—π‘π‘œ 25

  26. (Sampled) Cosine cos( 2𝜌 𝑂 𝑙 𝑦 𝑦) 𝑙 𝑦 is spatial frequency 𝑓. 𝑕. 𝑙 𝑦 = 8 𝑂 = 256 26

  27. 1D Cosine Gabor cos(2𝜌 𝑂 𝑙 𝑦 𝑦) βˆ— = 𝑓 βˆ’ 𝑦 2 1 2𝜏 2 2𝜌 𝜏 27

  28. 1D Sine Gabor sin(2𝜌 𝑂 𝑙 𝑦 𝑦) βˆ— = 𝑓 βˆ’ 𝑦 2 1 2𝜏 2 2𝜌 𝜏 28

  29. 2D cosine cos 2𝜌 𝑂 (𝑙 𝑦 𝑦 + 𝑙 𝑧 𝑧) 𝑓. 𝑕. 𝑙 𝑦 = 4 𝑙 𝑧 = 0 𝑂 = 256 29

  30. 2D sine sin 2𝜌 𝑂 (𝑙 𝑦 𝑦 + 𝑙 𝑧 𝑧) 𝑓. 𝑕. 𝑙 𝑦 = 8 𝑙 𝑧 = 2 𝑂 = 256 30

  31. model of simple cell: 2D Gabor cos 2𝜌 𝐻 𝑦, 𝑧, 𝜏 𝑂 (𝑙 𝑦 𝑦 + 𝑙 𝑧 𝑧) 𝑓. 𝑕. 𝑙 𝑧 = 0 sin 2𝜌 𝐻 𝑦, 𝑧, 𝜏 𝑂 (𝑙 𝑦 𝑦 + 𝑙 𝑧 𝑧) 𝑓. 𝑕. 𝑙 𝑧 = 0 31

  32. 32

  33. β€’ What is the response of a family of Gabor cells to a single image ? e.g. Consider shifted versions of the Gabor cell. β€’ What is the response of a single Gabor cell to a parameterized family of images ? e.g. thin white line at different positions in receptive field 33

  34. What is the response of a family of Gabor cells to a single image? 34

  35. cross correlation with (four) cosine Gabors 35

  36. cross correlation with (four) sine Gabors 36

  37. β€’ What is the response of a family of Gabor cells to a single image ? e.g. Consider shifted versions of the Gabor cell. β€’ What is the response of a single Gabor cell to a parameterized family of images ? e.g. thin white line at different positions in receptive field 37

  38. 𝑀 ≑ 𝑑𝑝𝑑𝐻𝑏𝑐𝑝𝑠 𝑦 , 𝑧 𝐽 𝑦, 𝑧; 𝑦 π‘₯β„Žπ‘—π‘’π‘“ π‘šπ‘—π‘œπ‘“ 𝑦 ,𝑧 38

  39. 𝑀 ≑ 𝑑𝑝𝑑𝐻𝑏𝑐𝑝𝑠 𝑦 , 𝑧 𝐽 𝑦, 𝑧; 𝑦 π‘₯β„Žπ‘—π‘’π‘“ π‘šπ‘—π‘œπ‘“ 𝑦 ,𝑧 cos 2𝜌 Non-zero only at 𝑦 position 𝐻 𝑦, 𝑧, 𝜏 𝑂 (𝑙 𝑦 𝑦) of vertical line 39

  40. 𝑀 ≑ π‘‘π‘—π‘œπ»π‘π‘π‘π‘  𝑦 , 𝑧 𝐽 𝑦, 𝑧; 𝑦 π‘₯β„Žπ‘—π‘’π‘“ π‘šπ‘—π‘œπ‘“ 𝑦 ,𝑧 π‘‘π‘—π‘œ 2𝜌 Non-zero only at 𝑦 position 𝐻 𝑦, 𝑧, 𝜏 𝑂 (𝑙 𝑦 𝑦) of vertical line 40

  41. Gaussian envelope (discuss next lecture) 41

Recommend


More recommend