side channel masking with pseudo random generator
play

Side-channel Masking with Pseudo-Random Generator Eurocrypt 2020 - PowerPoint PPT Presentation

Side-channel Masking with Pseudo-Random Generator Eurocrypt 2020 Jean-Sbastien Coron Aurlien Greuet Rina Zeitoun University of Luxembourg & IDEMIA 11/05/2020 Jean-Sbastien Coron, Aurlien Greuet, Rina Zeitoun Side-channel Masking


  1. Side-channel Masking with Pseudo-Random Generator Eurocrypt 2020 Jean-Sébastien Coron Aurélien Greuet Rina Zeitoun University of Luxembourg & IDEMIA 11/05/2020 Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  2. Motivation: side-channel attacks High-order masking : randomness cost Number of randoms is high: can become a bottleneck Our goal: minimize number of calls to TRNG and remain secure in the probing model t = 2 t = 3 t = 4 t = 5 t = 6 Rivain-Prouff [RP10] 2880 5760 9600 14400 20160 Belaïd et. al [BBP16] 2560 5120 8000 13120 18240 Faust et. al [FPS17] 1415 2530 6082 6699 20712 This paper 48 108 192 300 432 Table: number of bytes of true randomness to get t -th order security for AES. Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  3. Motivation: side-channel attacks High-order masking : randomness cost Number of randoms is high: can become a bottleneck Our goal: minimize number of calls to TRNG and remain secure in the probing model t = 2 t = 3 t = 4 t = 5 t = 6 Rivain-Prouff [RP10] 2880 5760 9600 14400 20160 Belaïd et. al [BBP16] 2560 5120 8000 13120 18240 Faust et. al [FPS17] 1415 2530 6082 6699 20712 This paper 48 108 192 300 432 Table: number of bytes of true randomness to get t -th order security for AES. Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  4. Side-Channel attacks Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  5. Differential Power Analysis [KJJ99] Group by predicted SBox output bit Average trace 111 Differential trace 000 Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  6. Countermeasure Masking countermeasure Let x be a sensitive variable: Generate a random r (different for each execution) x ′ = x ⊕ r Mask x using r : Manipulate x ′ (instead of x ) and r independently r is random ⇒ x ′ is random ⇒ no information on x leaks True only in case of one leakage point ☞ Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  7. Countermeasure Masking countermeasure Let x be a sensitive variable: Generate a random r (different for each execution) x ′ = x ⊕ r Mask x using r : Manipulate x ′ (instead of x ) and r independently r is random ⇒ x ′ is random ⇒ no information on x leaks True only in case of one leakage point ☞ Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  8. Countermeasure Masking countermeasure Let x be a sensitive variable: Generate a random r (different for each execution) x ′ = x ⊕ r Mask x using r : Manipulate x ′ (instead of x ) and r independently r is random ⇒ x ′ is random ⇒ no information on x leaks True only in case of one leakage point ☞ Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  9. Differential Power Analysis (second-order) Manipulation of x ′ = x ⊕ r E ( x ′ ) E ( r ) f ( E ( x ′ ) , E ( r )) correlated with x = x ′ ⊕ r Second-order attack requires more curves but can be practical Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  10. Solution: Higher-Order Boolean Masking Basic principle Each sensitive variable x is shared into n variables: x = x 1 ⊕ x 2 ⊕ · · · ⊕ x n Generate n − 1 random variables x 1 , x 2 , . . ., x n − 1 Initially let x n = x ⊕ x 1 ⊕ x 2 ⊕ · · · ⊕ x n − 1 Security against DPA attack of order n − 1 Any subset of n − 1 shares is uniformly and independently distributed ⇒ If we probe at most n − 1 shares x i , we learn nothing about x Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  11. Solution: Higher-Order Boolean Masking Basic principle Each sensitive variable x is shared into n variables: x = x 1 ⊕ x 2 ⊕ · · · ⊕ x n Generate n − 1 random variables x 1 , x 2 , . . ., x n − 1 Initially let x n = x ⊕ x 1 ⊕ x 2 ⊕ · · · ⊕ x n − 1 Security against DPA attack of order n − 1 Any subset of n − 1 shares is uniformly and independently distributed ⇒ If we probe at most n − 1 shares x i , we learn nothing about x Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  12. ISW Security Model Proof of security in the Probing Model [ISW03]: ( x 1 , x 2 , . . ., x n ) m t probes Sim Block cipher c Show that any t < n probes can be perfectly simulated from at most n − 1 of the x i ’s. Those n − 1 shares x i are uniformly and independently distributed. ⇒ The adversary learns nothing from the t probes Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  13. ISW Security Model Proof of security in the Probing Model [ISW03]: ( x 1 , x 2 , . . ., x n ) m t probes Sim Block cipher c Show that any t < n probes can be perfectly simulated from at most n − 1 of the x i ’s. Those n − 1 shares x i are uniformly and independently distributed. ⇒ The adversary learns nothing from the t probes Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  14. Linear Operations Computation of a ⊕ b Inputs: ( a i ) i and ( b i ) i such that a 1 ⊕ a 2 ⊕ · · · ⊕ a n = a b 1 ⊕ b 2 ⊕ · · · ⊕ b n = b Output: ( c i ) i such that ( a 1 ⊕ b 1 ) ⊕ ( a 2 ⊕ b 2 ) ⊕ · · · ⊕ ( a n ⊕ b n ) = a ⊕ b ⇒ c 1 ⊕ c 2 ⊕ · · · ⊕ c n = a ⊕ b Computation of a 2 in F 2 k Inputs: ( a i ) i such that a 1 ⊕ a 2 ⊕ · · · ⊕ a n = a Output: ( c i ) i such that ( a 2 1 ) ⊕ ( a 2 2 ) ⊕ · · · ⊕ ( a 2 n ) = a 2 ⇒ c 1 ⊕ c 2 ⊕ · · · ⊕ c n = a 2 Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  15. Linear Operations Computation of a ⊕ b Inputs: ( a i ) i and ( b i ) i such that a 1 ⊕ a 2 ⊕ · · · ⊕ a n = a b 1 ⊕ b 2 ⊕ · · · ⊕ b n = b Output: ( c i ) i such that ( a 1 ⊕ b 1 ) ⊕ ( a 2 ⊕ b 2 ) ⊕ · · · ⊕ ( a n ⊕ b n ) = a ⊕ b ⇒ c 1 ⊕ c 2 ⊕ · · · ⊕ c n = a ⊕ b Computation of a 2 in F 2 k Inputs: ( a i ) i such that a 1 ⊕ a 2 ⊕ · · · ⊕ a n = a Output: ( c i ) i such that ( a 2 1 ) ⊕ ( a 2 2 ) ⊕ · · · ⊕ ( a 2 n ) = a 2 ⇒ c 1 ⊕ c 2 ⊕ · · · ⊕ c n = a 2 Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  16. Secure Multiplication in High-Order Masking Schemes Secure Computation of a × b Inputs: ( a i ) i and ( b i ) i such that a 1 ⊕ a 2 ⊕ · · · ⊕ a n = a b 1 ⊕ b 2 ⊕ · · · ⊕ b n = b Output: ( c i ) i such that c 1 ⊕ c 2 ⊕ c 2 ⊕ · · · ⊕ c n = a × b Ishai-Sahai-Wagner private circuit [ISW03] Secure against t probes for n = 2 t + 1 shares. Number of operations: O( t 2 ) Requires O( t 2 ) randoms per multiplication. Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  17. Secure Multiplication in High-Order Masking Schemes Secure Computation of a × b Inputs: ( a i ) i and ( b i ) i such that a 1 ⊕ a 2 ⊕ · · · ⊕ a n = a b 1 ⊕ b 2 ⊕ · · · ⊕ b n = b Output: ( c i ) i such that c 1 ⊕ c 2 ⊕ c 2 ⊕ · · · ⊕ c n = a × b Ishai-Sahai-Wagner private circuit [ISW03] Secure against t probes for n = 2 t + 1 shares. Number of operations: O( t 2 ) Requires O( t 2 ) randoms per multiplication. Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  18. Ishai-Sahai-Wagner (ISW) Scheme Decomposition of the c i �� � �� � � � c i = a i b i a i b j = i i i i , j Example for n = 3 ☞ For n shares: requires n ( n − 1 )/ 2 fresh random values Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  19. Ishai-Sahai-Wagner (ISW) Scheme Decomposition of the c i �� � �� � � � c i = a i b i a i b j = i i i i , j Example for n = 3 � � a 1 b 1 a 1 b 2 a 1 b 3 � � � � a 2 b 1 a 2 b 2 a 2 b 3 � � a 3 b 1 a 3 b 2 a 3 b 3 ☞ For n shares: requires n ( n − 1 )/ 2 fresh random values Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  20. Ishai-Sahai-Wagner (ISW) Scheme Decomposition of the c i �� � �� � � � c i = a i b i a i b j = i i i i , j Example for n = 3 � � a 1 b 1 a 1 b 2 a 1 b 3 → c 1 � � � � → c 2 a 2 b 1 a 2 b 2 a 2 b 3 → c 3 � � a 3 b 1 a 3 b 2 a 3 b 3 ☞ For n shares: requires n ( n − 1 )/ 2 fresh random values Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

  21. Ishai-Sahai-Wagner (ISW) Scheme Decomposition of the c i �� � �� � � � c i = a i b i a i b j = i i i i , j Example for n = 3 � � a 1 b 1 a 1 b 2 a 1 b 3 → c 1 � � � � → c 2 a 2 b 1 a 2 b 2 a 2 b 3 → c 3 � � a 3 b 1 a 3 b 2 a 3 b 3 ☞ For n shares: requires n ( n − 1 )/ 2 fresh random values Jean-Sébastien Coron, Aurélien Greuet, Rina Zeitoun Side-channel Masking with Pseudo-Random Generator

Recommend


More recommend