Selfish Overlay Network Formation Georgios Smaragdakis 1 1
Deutsche Telekom Laboratories. T-Labs, An-Institute of Technische Universität Berlin T-Labs, Ben-Gurion University T-Labs US, Stanford University 2 2
Strategic Research concentrates on long- term technology and applied research. Service-centric Quality and Security in Intelligent Networks Usability Lab Telecommunications Networking Network Audio Microkernel Definition in Measurement Technology Security 2010 and Security Image and Vehicular Routing Vision Security Wireless Computing Wireless Mobile and Networks Security Virtualization Physical Server Security Interaction Peer to Peer Data Security Quality Content and Speech Cryptography Distribution Technology Networks Usability Functional groups Networking / Security / Usability 3 3
Innovation Development and Strategic Research work side by side, to jointly achieve goals. Strategic Research Innovation Development Strategic Research concentrates on Innovation Development develops the long-term technology research innovative solutions, as a basis for and applied research. the commercial use by the Group‘s business areas. Strategic Research creates the foundation for the development of innovative solutions in Innovation Development. Results Results Publications Market studies Patents Acceptance tests Demonstrations Business models Prototypes 4 4
The success of Telekom Laboratories is measured at the transfer to the Group’s business areas or to spin-offs. 5 5
Telekom Laboratories cooperate according to the Open Innovation model with selected Rheinische Friedrich- Wilhelms-Universität Norwegian University of research institutes. Bonn Science and Technology Imperial College Technische Universität London Berlin École Nationale Princeton d’Ingénieurs de University Fraunhofer-Institut für Brest Nachrichtentechnik Boston Univeridad Heinrich-Hertz-Institut University Carlos III de Fraunhofer-Institut für University of Madrid Offene Illinois Technische Kommunikationssystem Universität e Darmstadt Ben-Gurion University Stanford University Universite Catholique Ludwig-Maximilian- de Louvain UC Universität München Berkeley/ICSI École Polytechnique Technische Universität Fédérale de Lausanne München Universität St. Gallen 6 6
Selfish Overlay Network Formation Georgios Smaragdakis Joint work with Nikolaos Laoutaris, Azer Bestavros, John Byers, Pietro Michiardi, Mema Roussopoulos and Vassilis Lekakis 7 1
O ver l ays overlay O 2 plane process O 1 O 3 overlay node physical plane R 3 R 2 R 1 router, AS R 4 8 2
O ver l ay Econom i cs & Nei ghbor Sel ect i on Market: Investment: Flat Resource Allocation i nt e r ne t t r a ns i t I SP t r a ns i t I SP overlay links $ $$ $$ $$ a c c e s s I SP overlay node a c c e s s I SP a c c e s s I SP 9 3
Connect i vi t y M anagem ent Full mesh architectures for reliability (e.g. RON) Myopic heuristics random or proximity based neighbor selection Tree forest or mesh construction to optimize multicast (e.g. Bullet, Splitstream) Optimization for network delay (e.g. Detour, QRON) Opportunistic choke/unchoke (e.g. BitTorrent) Distributed hashing tables (e.g. Chord, Pastry, Tapestry) 10 4
Chal l enges Op p o r t uni t i e s Network Heterogeneity: pair wise delay or available bandwidth, storage, cpu cycles, budget… Load Variability: diurnal variation of traffic, dynamic routing or pricing, node churn… Diversity of users: different prospective, conflicting objectives 11 5
St r at egi c Resour ce Al l ocat i on Tr a ns a c t i o n o n I NFOCOM ’ 0 7 Ne t wo r k i ng I m pl i cat i ons t o Sel f i sh O ver l ay Pr ot ocol Desi gn Net w or k Cr eat i on EG O I ST Appl i cat i on t o sw ar m i ng syst em s I nf o c o m 2 0 0 8 , TPDS Co NEXT 2 0 0 8 12 6
St r at egi c Resour ce Al l ocat i on I m pl i cat i ons t o Sel f i sh O ver l ay Pr ot ocol Desi gn Net w or k Cr eat i on EG O I ST Appl i cat i on t o sw ar m i ng syst em s 13 7
Net w or k Cr eat i on Local Connection Game <V,{s i },{C i }> [Fabrikant et al,PODC’03] V: set of n players (nodes) {s i }: strategies available to v i (wirings) {C i }: set of utilities for v i (cost) Outcome: S is the global wiring a a ∑ = α ⋅ + c S s d v v ( ) | | ( , ) m i n i i S i j ∈ v j V − i 14 8
O ver l ay Net w or k Cr eat i on Towards a Real c model for Overlay Networks: i st i Directed Edges Bounded out- and in-degree Non-uniform preference vectors Realistic models of physical distance Towards a Ri G am e , easi e via a network cher l y r eal i zabl protocol. 15 9
Sel f i sh Nei ghbor Sel ect i on ( SNS) v i : Choose k neighbors ∑ = ⋅ C S p d v v ( ) ( , ) m i n i ij S i j ∈ w v j V − i ∈ S o v e r a l l s i i u v i G - =( V - , S - ) i i i Se t o f r e s i d ua l no d e s Se t o f r e s i d ua l wi r i ng v i ’ s r esi dual net w or k 16 10
SNS & k- m edi an Uniform link weights, and uniform preference k-median on asymmetric distances 17 11
k- m edi an k- m edi an: Find a subset I of F and a function σ:C I, to: min ( Σ i,j s j c ij ) such that |I| ≤ k F: set of C: set of clients, facilities c ij : cost connecting client j facility I s j : demand of node 18 12
k- m edi an 19 13
SNS & k- m edi an Uniform link weights, and uniform preference k-median on asymmetric distances Si nce t he w i r i ng w w Non-uniform link weights, and uniform cost i s t he sam e preference v i ILP formulation u u ∑ = ⋅ w , u can be C ( S ) p d ( v , v ) m i n i ij S i j obt ai ned f r om ∈ v j V − i k- m edi an on r ever sed di st ances 20 14
Local Sear ch ( LS) v i : choose k neighbors ∑ = ⋅ C S p d v v ( ) ( , ) m i n i ij S i j ∈ w v j V − i ∈ S o v e r a l l s i i u v i [Arya et al,STOC’01] G - =( V - , S - ) i i i Se t o f r e s i d ua l no d e s Se t o f r e s i d ua l wi r i ng v i ’ s r esi dual net w or k 21 15
SNS : t he G am e Game <V,{s i },{C i }> V : set of n players (nodes) {s i }: strategies available to v i (wirings), choose k out of n to connect {C i }: set of costs for v i ∑ = ⋅ min C S p d v v ( ) ( , ) i ij S i j ∈ v j V − i Best response of a node: node’s optimal wiring Outcome: S, the global wiring A stable wiring is a pure Nash equilibium Using iterative best response Fundamentally different from selfish routing 22 16
SNS : Equi l i br i a Uniform Preference Skewness of preference n=15 k=2 k=3 k=8 I n- degr ees ar e hi ghl y skew ed k=11 even under uni f or m pr ef er ence ! Qua l i t y - b a s e d “ p r e f e r e nt i a l a t t a c h me nt ” 23 k (Link density) 17
SNS : Ef f i ci ency Performance of ILP & LS is close to Utopian! Skewness of Skewness of Link density preference Link density preference Theoretical results showed in the worst case the social cost can be bad 24 [Laoutaris, Poplawsi, Rajaraman, Sundaram, Teng,PODC’08] 18
St r at egi c Resour ce Al l ocat i on I m pl i cat i ons t o Sel f i sh O ver l ay Pr ot ocol Desi gn Net w or k Cr eat i on EG O I ST Appl i cat i on t o sw ar m i ng syst em s 25 19
SNS : Tr ace- Dr i ven Eval uat i on How we assign the distance: Synthetically using BRITE Empirically from PlanetLab Empirically from AS-level maps [Routeviews] Neighbor Selection Strategies: k-Random heuristic k-Closest heuristic k-Regular heuristic k-Best Response Control parameter: Bound on out-degree k (link density) 26 20
SNS vs. Heur i st i cs: Soci al Cost Macroscopic view: Focusing on the social welfare (k=2) k-Random/BR k-Closest/BR k-Regular/BR BRITE 1.44 1.53 3.61 PlanetLab 2.23 1.48 3.84 AS 2.04 1.90 4.78 The network is better off with selfish nodes! 27 21
Connect i ng on a k- Random gr aph PlanetLab ( n =50 ) AS-Level ( n =50 ) BRITE ( n =50 ) 0 2 3 5 11 22 0 2 3 5 11 22 0 2 3 5 11 22 k k k If your neighbors are naïve, it pays to be selfish! 28 22
Connect i ng on a k- Cl osest gr aph PlanetLab ( n =50 ) AS-Level ( n =50 ) BRITE ( n =50 ) 0 2 3 5 11 22 0 2 3 5 11 22 0 2 3 5 11 22 k k k If your neighbors are greedy, it pays to be selfish! 29 23
Recommend
More recommend