securing secret sharing against leakage and tampering
play

Securing Secret Sharing Against Leakage and Tampering Ashutosh - PowerPoint PPT Presentation

Securing Secret Sharing Against Leakage and Tampering Ashutosh Kumar Based on joint works with Vipul Goyal, Raghu Meka, and Amit Sahai Secret Sharing secret s n s 1 s i Correctness: Any out of parties can


  1. Phase 1: -LRSS ( p , p + 1, p + 1) ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ ( m ) โ€ข ๐–ฒ๐–ป๐—ˆ๐–พ๐—‰๐—‡ a 1 , โ€ฆ, a p +1 โˆˆ {0,1} r โ€ข a โ† ๐–ฆ ( a 1 , โ€ฆ, a p +1 ) โ€ข b 1 , โ€ฆ, b p +1 โ† ๐–ธ๐–ฏ๐–ฒ p +1 p +1 ( m โŠ• a ) โ€ข share i โ† a i , b i ๐–ฒ๐–ฟ๐–ฝ ( m )

  2. Phase 1: -LRSS ( p , p + 1, p + 1) ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ ( m ) โ€ข ๐–ฒ๐–ป๐—ˆ๐–พ๐—‰๐—‡ a 1 , โ€ฆ, a p +1 โˆˆ {0,1} r โ€ข a โ† ๐–ฆ ( a 1 , โ€ฆ, a p +1 ) โ€ข b 1 , โ€ฆ, b p +1 โ† ๐–ธ๐–ฏ๐–ฒ p +1 p +1 ( m โŠ• a ) โ€ข share i โ† a i , b i ๐–ฒ๐–ฟ๐–ฝ ( m ) โ€ข a โ† ๐–ฆ ( a 1 , โ€ฆ, a p +1 )

  3. Phase 1: -LRSS ( p , p + 1, p + 1) ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ ( m ) โ€ข ๐–ฒ๐–ป๐—ˆ๐–พ๐—‰๐—‡ a 1 , โ€ฆ, a p +1 โˆˆ {0,1} r โ€ข a โ† ๐–ฆ ( a 1 , โ€ฆ, a p +1 ) โ€ข b 1 , โ€ฆ, b p +1 โ† ๐–ธ๐–ฏ๐–ฒ p +1 p +1 ( m โŠ• a ) โ€ข share i โ† a i , b i ๐–ฒ๐–ฟ๐–ฝ ( m ) โ€ข a โ† ๐–ฆ ( a 1 , โ€ฆ, a p +1 ) โ€ข m โ† a โŠ• b 1 โŠ• โ€ฆ โŠ• b p +1

  4. Phase 1: -LRSS ( p , p + 1, p + 1) ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ ( m ) โ€ข ๐–ฒ๐–ป๐—ˆ๐–พ๐—‰๐—‡ a 1 , โ€ฆ, a p +1 โˆˆ {0,1} r โ€ข a โ† ๐–ฆ ( a 1 , โ€ฆ, a p +1 ) b 1 , โ€ฆ, b p +1 โ† ๐–ธ๐–ฏ๐–ฒ p +1 โ€ข p +1 ( m โŠ• a ) โ€ข share i โ† a i , b i Leakage-Resilience: โ€จ Not resilient NOF protocol for โ†’ ๐–ฆ ๐–ฆ : ({0,1} r ) p +1 โ†’ {0,1} ฯต -โ€˜hardโ€™ for โ€จ NOF protocols with communication. ฮผ

  5. โ€จ Phase 2: Lifting โ€จ to ( p , p + 1, p + 1) ( p , p + 1, n ) Naive: For every subset of parties, create p + 1 an instance of scheme ( p , p + 1, p + 1) ๐–ฏ๐—†๐–พ โ‹… n p Share length: Ine ffi cient for p = ฯ‰ (1)

  6. Scatter and Reuse Shares [Kurosawa and Stinson 90s] independent instances of -LRSS M ( p , p + 1, p + 1) parties n s 1 1 , โ€ฆ, s 1 3 2 1 p +1 s 2 1 , โ€ฆ, s 2 p p + 1 1 โ†’ p +1 instances โ‹ฎ M p 1 2 s M 1 , โ€ฆ, s M p +1 Scattering Matrix

  7. Scatter and Reuse Shares [Kurosawa and Stinson 90s] independent instances of -LRSS M ( p , p + 1, p + 1) parties n n s 1 1 , โ€ฆ, s 1 s 1 s 1 s 1 3 2 1 p +1 3 2 1 s 2 s 2 s 2 1 , โ€ฆ, s 2 s 2 p p + 1 1 โ†’ 1 p p +1 โ†’ p +1 โ‹ฎ M s M s M s M p 1 2 s M 1 , โ€ฆ, s M p 1 2 p +1 Scattered Shares Scattering Matrix

  8. Scatter and Reuse Shares [Kurosawa and Stinson 90s] independent instances of -LRSS M ( p , p + 1, p + 1) parties n n s 1 1 , โ€ฆ, s 1 s 1 s 1 s 1 3 2 1 p +1 3 2 1 s 2 s 2 s 2 1 , โ€ฆ, s 2 s 2 p p + 1 1 โ†’ 1 p p +1 โ†’ p +1 โ‹ฎ M s M s M s M p 1 2 s M 1 , โ€ฆ, s M p 1 2 p +1 Scattered Shares Scattering Matrix Final share of party i โ† ๐–ฝ๐—‰๐—†๐—๐—‡๐—ˆ i

  9. Scatter and Reuse Shares What property of scattering matrix? n columns row โ€จ โˆ€ p + 1 โˆƒ 3 2 1 containing {1,โ€ฆ, p + 1} p p + 1 1 โ†“ M Any parties โ€จ p + 1 p 1 2 can reconstruct

  10. Scatter and Reuse Shares How to construct such a matrix? n columns row โ€จ โˆ€ p + 1 โˆƒ 3 2 1 containing {1,โ€ฆ, p + 1} p p + 1 1 โ†‘ M Perfect hash functions: p 1 2 M = 2 p log n [Fredman, Komlos, and Szemeredi 84] [Alon, Yuster and Zwick 95] [Naor, Schulman and Srinivasan 95]

  11. โ€จ โ€จ โ€จ Phase 2: Lifting โ€จ to ( p , p + 1, p + 1) ( p , p + 1, n ) ๐–ฏ๐—†๐–พ โ‹… (2 p โ‹… log n ) โ€ข Share length: โ€ข Secrecy: Immediate โ€จ โ€ข Leakage-resilience: Hybrid argument

  12. Disjoint subsets? Handling overlapping collusions in base scheme โ€จ is crucial for scattering. Weaker adversary: โ€ข Partition into disjoint subsets of size p โ€ข Non-adaptively leak from each subset Donโ€™t know how to handle without NOF . p = ฯ‰ (1)

  13. โ€จ Phase 3: Lifting โ€จ to ( p , p + 1, n ) ( p , t , n ) โ€ข a , b โ† ๐–ธ๐–ฏ๐–ฒ ๐Ÿฅ ๐Ÿฅ ( m ) โ€ข a 1 , โ€ฆ, a n โ† ๐–ณ๐—‚๐–ป๐—‡๐—ƒ๐—Œ t n ( a ) โ€ข b 1 , โ€ฆ, b n โ† ๐–ฌ๐–ฒ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ p +1 ( b ) n โ€ข share i โ† a i , b i โ€ข Secrecy: From ๐–ณ๐—‚๐–ป๐—‡๐—ƒ๐—Œ t n โ€ข Leakage-resilience: From ๐–ฌ๐–ฒ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ p +1 n

  14. โ€จ Phase 3: Lifting โ€จ to ( p , p + 1, n ) ( p , t , n ) โ€ข a , b โ† ๐–ธ๐–ฏ๐–ฒ ๐Ÿฅ ๐Ÿฅ ( m ) โ€ข a 1 , โ€ฆ, a n โ† ๐–ณ๐—‚๐–ป๐—‡๐—ƒ๐—Œ t n ( a ) โ€ข b 1 , โ€ฆ, b n โ† ๐–ฌ๐–ฒ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ p +1 ( b ) n โ€ข share i โ† a i , b i โ€ข Secrecy: From ๐–ณ๐—‚๐–ป๐—‡๐—ƒ๐—Œ t n โ€ข Leakage-resilience: From ๐–ฌ๐–ฒ๐–ณ๐—‚๐–ป๐—Œ๐–ฟ p +1 n โˆŽ

  15. Agenda Leakage-Resilience Non-Malleability

  16. What if a party tampers? s 4 s 3 s 2 secret s 1

  17. What if a party tampers? s 4 s 2 s 3 s 1

  18. What if a party tampers? s 4 s 2 s 3 secret s 1 Error Correction: Only 1 set of collinear triples

  19. What if a party tampers? s 4 s 2 s 3 secret s 1 Error Correction: Only 1 set of collinear triples How about 3 parties?

  20. What if a party tampers? s 3 s 2 secret s 1

  21. What if a party tampers? s 2 s 3 s 1

  22. What if a party tampers? s 2 s 3 s 1

  23. What if a party tampers? s 2 s 3 s 1 Cannot correct an error with only 3 parties.

  24. What if a party tampers? s 2 s 3 s 1 Cannot correct an error with only 3 parties. Can achieve weaker guarantee of โ€จ Error Detection: Non-collinear points

  25. What if everyone tampers? s 3 s 2 secret s 1

  26. What if everyone tampers? Overwrites โ€จ with 0 s 2 s 1 s 3

  27. What if everyone tampers? Overwrites โ€จ with 0 0 s 2 s 1 s 3

  28. What if everyone tampers? Overwrites โ€จ with 0 0 s 2 s 1 s 3 Cannot even detect errors!

  29. What if everyone tampers? Overwrites โ€จ with 0 0 s 2 s 1 s 3 Cannot even detect errors! But notice: Original secret was โ€˜destroyedโ€™.

  30. Modeling โ€˜Destructionโ€™ Inspired from Non-Malleable Codes: [Dziembowski, Pietrzak, Wichs 10] 0 s 1 s 2 s n โ€ฆ s 1 หœ s 2 หœ s n หœ โ€ฆ Any t m หœ

  31. Modeling โ€˜Destructionโ€™ Inspired from Non-Malleable Codes: [Dziembowski, Pietrzak, Wichs 10] 1 โ‰  0 s 1 s 2 s n โ€ฆ s 1 s 2 s n โ€ฆ s 1 หœ s 2 หœ s n หœ โ€ฆ s 1 หœ s 2 หœ s n หœ โ€ฆ Any t Any t m หœ m หœ

  32. Modeling โ€˜Destructionโ€™ Inspired from Non-Malleable Codes: [Dziembowski, Pietrzak, Wichs 10] 1 โ‰  0 s 1 s 2 s n โ€ฆ s 1 s 2 s n โ€ฆ s 1 หœ s 2 หœ s n หœ โ€ฆ s 1 หœ s 2 หœ s n หœ โ€ฆ Any t Any t โ‰ˆ ฯต m หœ m หœ

  33. โ€จ Non-Malleable Secret Sharing [Goyal-K 18] m NMSS: โ€จ s 1 s 2 s n โ€ฆ The distribution of tampered โ€จ secret is either identical or โ€จ statistically independent of the original secret. s 1 หœ s 2 หœ s n หœ โ€ฆ Any t m หœ

  34. โ€จ Non-Malleable Secret Sharing [Goyal-K 18] m NMSS: โ€จ s 1 s 2 s n โ€ฆ The distribution of tampered โ€จ secret is either identical or โ€จ statistically independent of the original secret. s 1 หœ s 2 หœ s n หœ โ€ฆ Any t m หœ Intuition: Secret hidden even after learning tampered secret.

  35. Shamirโ€™s scheme is Malleable s 3 s 2 ๐—๐–ฟ๐–ฝ๐—Œ๐–ฟ๐—Ž s 1

  36. Shamirโ€™s scheme is Malleable s 3 + 1 s 2 + 1 s 1 + 1 s 3 s 2 ๐—๐–ฟ๐–ฝ๐—Œ๐–ฟ๐—Ž s 1

  37. Shamirโ€™s scheme is Malleable s 3 + 1 s 2 + 1 ๐—๐–ฟ๐–ฝ๐—Œ๐–ฟ๐—Ž + 1 s 1 + 1 s 3 s 2 ๐—๐–ฟ๐–ฝ๐—Œ๐–ฟ๐—Ž s 1

  38. Shamirโ€™s scheme is Malleable s 3 + 1 s 2 + 1 ๐—๐–ฟ๐–ฝ๐—Œ๐–ฟ๐—Ž + 1 s 1 + 1 s 3 s 2 ๐—๐–ฟ๐–ฝ๐—Œ๐–ฟ๐—Ž s 1 In fact, all linear schemes are malleable.

  39. Our Results for NMSS Theorem [Goyal-K 18] : Compile any scheme into โ€จ non-malleable one against individual tampering.

  40. Our Results for NMSS Theorem [Goyal-K 18] : Compile any scheme into โ€จ non-malleable one against individual tampering. Theorem [K, Meka, Sahai 19] : Allow tampering โ€จ to depend on individual leakage.

  41. Our Results for NMSS Theorem [Goyal-K 18] : Compile any scheme into โ€จ non-malleable one against individual tampering. Theorem [K, Meka, Sahai 19] : Allow tampering โ€จ to depend on individual leakage. -out-of- NMSS โ€จ 2 2 studied as NM Codes

  42. Joint Tampering? [Goyal-K 18]

  43. Joint Tampering? [Goyal-K 18] Theorem: -out-of- scheme that is non-malleable โ€จ t n against joint tampering in two subsets โ€จ (except equal sized subsets).

  44. Outline for NMSS Non-Malleable Codes โ†“ โ€ข Ingredient 1: -out-of- NMSS 2 2

  45. Outline for NMSS Non-Malleable Codes โ†“ โ€ข Ingredient 1: -out-of- NMSS 2 2 โ€ข Ingredient 2: A pair of โ€˜unfriendlyโ€™ SS schemes

  46. Outline for NMSS Non-Malleable Codes โ†“ โ€ข Ingredient 1: -out-of- NMSS 2 2 โ€ข Ingredient 2: A pair of โ€˜unfriendlyโ€™ SS schemes โ†“

  47. Outline for NMSS Non-Malleable Codes โ†“ โ€ข Ingredient 1: -out-of- NMSS 2 2 โ€ข Ingredient 2: A pair of โ€˜unfriendlyโ€™ SS schemes โ†“ Our Compiler for NMSS

  48. -out-of- NMSS 2 2 m l r หœ l r หœ m หœ

  49. -out-of- NMSS 2 2 m Follows from split-state โ€จ 2 non-malleable codes l r หœ l r หœ m หœ

  50. -out-of- NMSS 2 2 m Follows from split-state โ€จ 2 non-malleable codes l r [Dziembowski, Pietrzak, Wichs 10] [Liu, Lysyanskaya 12] หœ l r หœ [Dziembowski, Kazana, Obremski 13] [Aggarwal, Dodis, Lovett 14] โ€ฆ m หœ

  51. -out-of- NMSS? 3 n

Recommend


More recommend