Phase 1: -LRSS ( p , p + 1, p + 1) ๐ณ๐๐ป๐๐ฟ ( m ) โข ๐ฒ๐ป๐๐พ๐๐ a 1 , โฆ, a p +1 โ {0,1} r โข a โ ๐ฆ ( a 1 , โฆ, a p +1 ) โข b 1 , โฆ, b p +1 โ ๐ธ๐ฏ๐ฒ p +1 p +1 ( m โ a ) โข share i โ a i , b i ๐ฒ๐ฟ๐ฝ ( m )
Phase 1: -LRSS ( p , p + 1, p + 1) ๐ณ๐๐ป๐๐ฟ ( m ) โข ๐ฒ๐ป๐๐พ๐๐ a 1 , โฆ, a p +1 โ {0,1} r โข a โ ๐ฆ ( a 1 , โฆ, a p +1 ) โข b 1 , โฆ, b p +1 โ ๐ธ๐ฏ๐ฒ p +1 p +1 ( m โ a ) โข share i โ a i , b i ๐ฒ๐ฟ๐ฝ ( m ) โข a โ ๐ฆ ( a 1 , โฆ, a p +1 )
Phase 1: -LRSS ( p , p + 1, p + 1) ๐ณ๐๐ป๐๐ฟ ( m ) โข ๐ฒ๐ป๐๐พ๐๐ a 1 , โฆ, a p +1 โ {0,1} r โข a โ ๐ฆ ( a 1 , โฆ, a p +1 ) โข b 1 , โฆ, b p +1 โ ๐ธ๐ฏ๐ฒ p +1 p +1 ( m โ a ) โข share i โ a i , b i ๐ฒ๐ฟ๐ฝ ( m ) โข a โ ๐ฆ ( a 1 , โฆ, a p +1 ) โข m โ a โ b 1 โ โฆ โ b p +1
Phase 1: -LRSS ( p , p + 1, p + 1) ๐ณ๐๐ป๐๐ฟ ( m ) โข ๐ฒ๐ป๐๐พ๐๐ a 1 , โฆ, a p +1 โ {0,1} r โข a โ ๐ฆ ( a 1 , โฆ, a p +1 ) b 1 , โฆ, b p +1 โ ๐ธ๐ฏ๐ฒ p +1 โข p +1 ( m โ a ) โข share i โ a i , b i Leakage-Resilience: โจ Not resilient NOF protocol for โ ๐ฆ ๐ฆ : ({0,1} r ) p +1 โ {0,1} ฯต -โhardโ for โจ NOF protocols with communication. ฮผ
โจ Phase 2: Lifting โจ to ( p , p + 1, p + 1) ( p , p + 1, n ) Naive: For every subset of parties, create p + 1 an instance of scheme ( p , p + 1, p + 1) ๐ฏ๐๐พ โ n p Share length: Ine ffi cient for p = ฯ (1)
Scatter and Reuse Shares [Kurosawa and Stinson 90s] independent instances of -LRSS M ( p , p + 1, p + 1) parties n s 1 1 , โฆ, s 1 3 2 1 p +1 s 2 1 , โฆ, s 2 p p + 1 1 โ p +1 instances โฎ M p 1 2 s M 1 , โฆ, s M p +1 Scattering Matrix
Scatter and Reuse Shares [Kurosawa and Stinson 90s] independent instances of -LRSS M ( p , p + 1, p + 1) parties n n s 1 1 , โฆ, s 1 s 1 s 1 s 1 3 2 1 p +1 3 2 1 s 2 s 2 s 2 1 , โฆ, s 2 s 2 p p + 1 1 โ 1 p p +1 โ p +1 โฎ M s M s M s M p 1 2 s M 1 , โฆ, s M p 1 2 p +1 Scattered Shares Scattering Matrix
Scatter and Reuse Shares [Kurosawa and Stinson 90s] independent instances of -LRSS M ( p , p + 1, p + 1) parties n n s 1 1 , โฆ, s 1 s 1 s 1 s 1 3 2 1 p +1 3 2 1 s 2 s 2 s 2 1 , โฆ, s 2 s 2 p p + 1 1 โ 1 p p +1 โ p +1 โฎ M s M s M s M p 1 2 s M 1 , โฆ, s M p 1 2 p +1 Scattered Shares Scattering Matrix Final share of party i โ ๐ฝ๐๐๐๐๐ i
Scatter and Reuse Shares What property of scattering matrix? n columns row โจ โ p + 1 โ 3 2 1 containing {1,โฆ, p + 1} p p + 1 1 โ M Any parties โจ p + 1 p 1 2 can reconstruct
Scatter and Reuse Shares How to construct such a matrix? n columns row โจ โ p + 1 โ 3 2 1 containing {1,โฆ, p + 1} p p + 1 1 โ M Perfect hash functions: p 1 2 M = 2 p log n [Fredman, Komlos, and Szemeredi 84] [Alon, Yuster and Zwick 95] [Naor, Schulman and Srinivasan 95]
โจ โจ โจ Phase 2: Lifting โจ to ( p , p + 1, p + 1) ( p , p + 1, n ) ๐ฏ๐๐พ โ (2 p โ log n ) โข Share length: โข Secrecy: Immediate โจ โข Leakage-resilience: Hybrid argument
Disjoint subsets? Handling overlapping collusions in base scheme โจ is crucial for scattering. Weaker adversary: โข Partition into disjoint subsets of size p โข Non-adaptively leak from each subset Donโt know how to handle without NOF . p = ฯ (1)
โจ Phase 3: Lifting โจ to ( p , p + 1, n ) ( p , t , n ) โข a , b โ ๐ธ๐ฏ๐ฒ ๐ฅ ๐ฅ ( m ) โข a 1 , โฆ, a n โ ๐ณ๐๐ป๐๐๐ t n ( a ) โข b 1 , โฆ, b n โ ๐ฌ๐ฒ๐ณ๐๐ป๐๐ฟ p +1 ( b ) n โข share i โ a i , b i โข Secrecy: From ๐ณ๐๐ป๐๐๐ t n โข Leakage-resilience: From ๐ฌ๐ฒ๐ณ๐๐ป๐๐ฟ p +1 n
โจ Phase 3: Lifting โจ to ( p , p + 1, n ) ( p , t , n ) โข a , b โ ๐ธ๐ฏ๐ฒ ๐ฅ ๐ฅ ( m ) โข a 1 , โฆ, a n โ ๐ณ๐๐ป๐๐๐ t n ( a ) โข b 1 , โฆ, b n โ ๐ฌ๐ฒ๐ณ๐๐ป๐๐ฟ p +1 ( b ) n โข share i โ a i , b i โข Secrecy: From ๐ณ๐๐ป๐๐๐ t n โข Leakage-resilience: From ๐ฌ๐ฒ๐ณ๐๐ป๐๐ฟ p +1 n โ
Agenda Leakage-Resilience Non-Malleability
What if a party tampers? s 4 s 3 s 2 secret s 1
What if a party tampers? s 4 s 2 s 3 s 1
What if a party tampers? s 4 s 2 s 3 secret s 1 Error Correction: Only 1 set of collinear triples
What if a party tampers? s 4 s 2 s 3 secret s 1 Error Correction: Only 1 set of collinear triples How about 3 parties?
What if a party tampers? s 3 s 2 secret s 1
What if a party tampers? s 2 s 3 s 1
What if a party tampers? s 2 s 3 s 1
What if a party tampers? s 2 s 3 s 1 Cannot correct an error with only 3 parties.
What if a party tampers? s 2 s 3 s 1 Cannot correct an error with only 3 parties. Can achieve weaker guarantee of โจ Error Detection: Non-collinear points
What if everyone tampers? s 3 s 2 secret s 1
What if everyone tampers? Overwrites โจ with 0 s 2 s 1 s 3
What if everyone tampers? Overwrites โจ with 0 0 s 2 s 1 s 3
What if everyone tampers? Overwrites โจ with 0 0 s 2 s 1 s 3 Cannot even detect errors!
What if everyone tampers? Overwrites โจ with 0 0 s 2 s 1 s 3 Cannot even detect errors! But notice: Original secret was โdestroyedโ.
Modeling โDestructionโ Inspired from Non-Malleable Codes: [Dziembowski, Pietrzak, Wichs 10] 0 s 1 s 2 s n โฆ s 1 ห s 2 ห s n ห โฆ Any t m ห
Modeling โDestructionโ Inspired from Non-Malleable Codes: [Dziembowski, Pietrzak, Wichs 10] 1 โ 0 s 1 s 2 s n โฆ s 1 s 2 s n โฆ s 1 ห s 2 ห s n ห โฆ s 1 ห s 2 ห s n ห โฆ Any t Any t m ห m ห
Modeling โDestructionโ Inspired from Non-Malleable Codes: [Dziembowski, Pietrzak, Wichs 10] 1 โ 0 s 1 s 2 s n โฆ s 1 s 2 s n โฆ s 1 ห s 2 ห s n ห โฆ s 1 ห s 2 ห s n ห โฆ Any t Any t โ ฯต m ห m ห
โจ Non-Malleable Secret Sharing [Goyal-K 18] m NMSS: โจ s 1 s 2 s n โฆ The distribution of tampered โจ secret is either identical or โจ statistically independent of the original secret. s 1 ห s 2 ห s n ห โฆ Any t m ห
โจ Non-Malleable Secret Sharing [Goyal-K 18] m NMSS: โจ s 1 s 2 s n โฆ The distribution of tampered โจ secret is either identical or โจ statistically independent of the original secret. s 1 ห s 2 ห s n ห โฆ Any t m ห Intuition: Secret hidden even after learning tampered secret.
Shamirโs scheme is Malleable s 3 s 2 ๐๐ฟ๐ฝ๐๐ฟ๐ s 1
Shamirโs scheme is Malleable s 3 + 1 s 2 + 1 s 1 + 1 s 3 s 2 ๐๐ฟ๐ฝ๐๐ฟ๐ s 1
Shamirโs scheme is Malleable s 3 + 1 s 2 + 1 ๐๐ฟ๐ฝ๐๐ฟ๐ + 1 s 1 + 1 s 3 s 2 ๐๐ฟ๐ฝ๐๐ฟ๐ s 1
Shamirโs scheme is Malleable s 3 + 1 s 2 + 1 ๐๐ฟ๐ฝ๐๐ฟ๐ + 1 s 1 + 1 s 3 s 2 ๐๐ฟ๐ฝ๐๐ฟ๐ s 1 In fact, all linear schemes are malleable.
Our Results for NMSS Theorem [Goyal-K 18] : Compile any scheme into โจ non-malleable one against individual tampering.
Our Results for NMSS Theorem [Goyal-K 18] : Compile any scheme into โจ non-malleable one against individual tampering. Theorem [K, Meka, Sahai 19] : Allow tampering โจ to depend on individual leakage.
Our Results for NMSS Theorem [Goyal-K 18] : Compile any scheme into โจ non-malleable one against individual tampering. Theorem [K, Meka, Sahai 19] : Allow tampering โจ to depend on individual leakage. -out-of- NMSS โจ 2 2 studied as NM Codes
Joint Tampering? [Goyal-K 18]
Joint Tampering? [Goyal-K 18] Theorem: -out-of- scheme that is non-malleable โจ t n against joint tampering in two subsets โจ (except equal sized subsets).
Outline for NMSS Non-Malleable Codes โ โข Ingredient 1: -out-of- NMSS 2 2
Outline for NMSS Non-Malleable Codes โ โข Ingredient 1: -out-of- NMSS 2 2 โข Ingredient 2: A pair of โunfriendlyโ SS schemes
Outline for NMSS Non-Malleable Codes โ โข Ingredient 1: -out-of- NMSS 2 2 โข Ingredient 2: A pair of โunfriendlyโ SS schemes โ
Outline for NMSS Non-Malleable Codes โ โข Ingredient 1: -out-of- NMSS 2 2 โข Ingredient 2: A pair of โunfriendlyโ SS schemes โ Our Compiler for NMSS
-out-of- NMSS 2 2 m l r ห l r ห m ห
-out-of- NMSS 2 2 m Follows from split-state โจ 2 non-malleable codes l r ห l r ห m ห
-out-of- NMSS 2 2 m Follows from split-state โจ 2 non-malleable codes l r [Dziembowski, Pietrzak, Wichs 10] [Liu, Lysyanskaya 12] ห l r ห [Dziembowski, Kazana, Obremski 13] [Aggarwal, Dodis, Lovett 14] โฆ m ห
-out-of- NMSS? 3 n
Recommend
More recommend