scientific literature
play

Scientific Literature CEE 577 #41 1 NYC: Cannonsville Case Study - PowerPoint PPT Presentation

Updated: 17 April 2013 Print version Lecture #41 TOC & THMFP Models II Scientific Literature CEE 577 #41 1 NYC: Cannonsville Case Study CEE 577 #41 2 Cannonsville Reservoir Study Algal & THM Precursor Models Doerr,


  1. Updated: 17 April 2013 Print version Lecture #41 TOC & THMFP Models II Scientific Literature CEE 577 #41 1

  2. NYC: Cannonsville Case Study CEE 577 #41 2

  3. Cannonsville Reservoir Study  Algal & THM Precursor Models  Doerr, Stepczuk and others  Cannonsville Reservoir  Part of Catskill-Delaware Supply for NYC  Dimictic; Eutrophic (impounded in 1965)  P avg = 30 µg/L  Characteristics for 1995  Hydraulics  Loading  H mean = 19 m  TOC = ? x 10 2 kg/yr  V = 373 x10 6 m 3  P = ? x 10 3 kg/yr  τ mean = 4.7 months  SA = 19.3 x10 6 m 2  DA = 1160 x10 6 m 2 For more, see the literature at: https://www.ecs.umass.edu/eve/research/nyc_chloramines/literature.html CEE 577 #41 3

  4.  Inflow  West Branch of Delaware River (WBDR) ~80%  Three outflows  Over spillway  Withdrawal to aqueduct  10, 20** or 37 m below spillway  Release at base of dam CEE 577 #41 4

  5.  Individual models CEE 577 #41 5

  6. Forcing Functions  Lower flows in 1995, resulted in lower loadings CEE 577 #41 6

  7. PAR  Photosynthetically- active radiation  Often defined as the light between 400 and 700 nm CEE 577 #41 7

  8. CEE 577 #41 8

  9. SOD  For CEE 577 #41 9

  10. SOD continued  In-situ device CEE 577 #41 10

  11. Model Performance  Weekly measurement in water column  Objective: monthly average within 2 standard deviations CEE 577 #41 11

  12. Performance II  Systematic depletions of:  Epilimnetic NO x  Hypolimnetic DO  Over-prediction of ammonia? CEE 577 #41 12

  13. Performance: DO  Progressive depletion of DO in hypolimnion CEE 577 #41 13

  14. CEE 577 #41 14

  15. Verification  Problem with limited data in 1994 CEE 577 #41 15

  16. Verification CEE 577 #41 16

  17. Verification CEE 577 #41 17

  18. Performance: Withdrawal CEE 577 #41 18

  19. Cannonsville THMs: General Info  Major Papers  Stepczuk, Martin, Longabucco, Bloomfield & Effler, 1998  “Allochthonous Contributions of THM Precursors in a Eutrophic Reservoir”, J. Lake & Res. Mgmt., 14(2/3)344-355  Stepczuk, Martin, Effler, Bloomfield & Auer, 1998  “Spatial and Temporal Patterns of THM Precursors in a Eutrophic Reservoir”, J. Lake & Res. Mgmt., 14(2/3)356-366  Stepczuk, Owens, Effler, Bloomfield & Auer, 1998  “A Modeling Analysis of THM Precursors for a Eutrophic Reservoir, J. Lake & Res. Mgmt., 14(2/3)367-378  THMFP Method  Method 5710B of Standard Methods  pH 7.0, 7 days, 25 C, dosed to get >1.0 mg/L residual  Average CV was 4% for field replicates CEE 577 #41 19

  20. 1995 Data  Severe Drought  Net production of precursors in Epilimnion is evident from THMFP data Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 20

  21. Mass Balance Model: THMFP ∆ = − + M W E S = ∆ − + S M W E  Terms  W = allochthonous mass loading From tributaries  autochthon ous  E = mass export by outflow allochthon ous Spill + release + water supply withdrawal   S = net autochthonous production Gross production - decay  Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 21

  22. Mass Balance Model: DOC  Mid-summer drop in S  Not seen with THMFP  Lower average S:W ratio  1.7 for THMFP  0.7 for TOC autochthon ous allochthon ous Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 22

  23. Mass Balance Model: S  Monthly changes in S  Incremental not cumulative  No apparent correlation between net production of THMFP and DOC  Raises questions about use of TOC as a surrogate for THMFP Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 23

  24. dc ′ = − + − − 1 V W Q c E ( c c ) V S 1 1 1 1 12 2 1 1 1 dt dc ′ = + + − − 2-Layer model 1 V W Q c E ( c c ) V S 2 2 2 2 12 1 2 2 2 dt 0  Spatial resolution  Outflow (Q)  Epilimnion  Separated based on withdrawal location  Designated “1” or “E”  Hypolimnion  Mixing (E)  Designated “2” or “H”  From temperature data  Loading (W)  Net production (S)  Measured stream data  Not directly observed for epilimnion Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 24

  25. Estimation of vertical Dispersion Coefficient  Use analogous 2-layer temperature model ∆   ( ) T E A   = − 2 12 12 V T T   ∆ 2 1 2 t z 12 − − ( t 1 ) ( ) t T T V z = 2 2 2 12 ( ) E − ∆ 12 T T tA 1 2 12  Apply measured temperature profiles to get E Owens, 1998, J. Lake & Res. Mgmt., 14(2/3)152-161 CEE 577 #41 25

  26. S 1 & S 2 determined by Fitting S to Data fitting curves to data  Adjust S to match model predictions to data  Keep S at zero S 1 & S 2 equal to 0 CEE 577 #41 26

  27. Select of S (cont.)  Intermediate option  Fit S 1 to data  Set S 2 to zero  Justification for S 2 =0  No algal growth in hypolimnion  Allochthonous THMFP originally trapped in hypolimnion is recalcitrant Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 27

  28. Mechanistic Model for S  Sub-model for algal FP production ( ) d THMFP = α µ A TTHMFP dt = α µ ( FN )( FL ) A TTHMFP max z µ = g THMPF R 5 µ  Depends on: • max g Chl day  Algal concentration (A)  from measured Chl (C T )  Light Function  From Microcosm studies  Data fit data to Steele’s Equation 150 µ =  −  E K I I   L Stepczuk et al., 1998, J. Lake & Res. 2 = m s z z FL exp 1   Mgmt., 14(2/3)356-368 z   K K CEE 577 #41 28 L L

  29. Mechanistic Model for S  Sub-model for degradation of THMFP  Independent 1 st order loss terms for autochthonous and allochthonous forms ( ) d THMFP = − autochthon ous k THMFP L ( au ) autochthon ous dt ( ) d THMFP = − allochthon ous k THMFP L ( al ) allochthon ous dt CEE 577 #41 29

  30. Epilimnion: k L(al) =k L(au) =0.08d -1 Mechanistic Hypolimnion: k L(al) =k L(au) =0.00d -1 Model  Results based on:  Two Scenarios  No decay of any THMFP in hypolimnion Epilimnion: k L(al) =0.00; k L(au) =0.15d -1  No decay of Hypolimnion: k L(al) =0.00; k L(au) =0.15d -1 allochthonous THMFP  Fitted K L values Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 30

  31. 2-Layer model  Spatial resolution  Epilimnion S 1 & S 2 determined by  Designated “1” or “E” fitting curves to data  Hypolimnion  Designated “2” or “H” dc ′ = − + − − 1 V W Q c E ( c c ) V S 1 1 1 1 12 2 1 1 1 dt dc ′ = + + − − 1 V W Q c E ( c c ) V S 2 2 2 2 12 1 2 2 2 dt 0 Stepczuk et al., 1998, J. Lake & Res. Mgmt., 14(2/3)367-378 CEE 577 #41 31

  32.  To next lecture CEE 577 #41 32

Recommend


More recommend