Schur–Weyl duality over arbitrary commutative rings Tiago Cruz 11/06/2019 Spa, Belgium
Classical Schur–Weyl duality V = R n GL n ( R ) - the general linear group of degree n over R S d - the symmetric group on d letters 2
Classical Schur–Weyl duality V = R n GL n ( R ) - the general linear group of degree n over R S d - the symmetric group on d letters GL n ( R ) V ⊗ d S d GL n ( R ) ∋ g : g ( v 1 ⊗ · · · ⊗ v d ) = gv 1 ⊗ · · · ⊗ gv d S d ∋ σ : ( v 1 ⊗ · · · ⊗ v d ) σ = v σ (1) ⊗ · · · ⊗ v σ ( d ) 2
Classical Schur–Weyl duality V = R n GL n ( R ) - the general linear group of degree n over R S d - the symmetric group on d letters V ⊗ d GL n ( R ) S d GL n ( R ) ∋ g : g ( v 1 ⊗ · · · ⊗ v d ) = gv 1 ⊗ · · · ⊗ gv d S d ∋ σ : ( v 1 ⊗ · · · ⊗ v d ) σ = v σ (1) ⊗ · · · ⊗ v σ ( d ) Extending the actions to the group algebras we obtain the algebra homomorphisms � V ⊗ d � ρ : RGL n ( R ) → End R � V ⊗ d � ψ : RS d → End R . 2
Classical Schur–Weyl duality V = R n GL n ( R ) - the general linear group of degree n over R S d - the symmetric group on d letters GL n ( R ) V ⊗ d S d GL n ( R ) ∋ g : g ( v 1 ⊗ · · · ⊗ v d ) = gv 1 ⊗ · · · ⊗ gv d S d ∋ σ : ( v 1 ⊗ · · · ⊗ v d ) σ = v σ (1) ⊗ · · · ⊗ v σ ( d ) Extending the actions to the group algebras we obtain the algebra homomorphisms � V ⊗ d � ρ : RGL n ( R ) → End RS d � V ⊗ d � ψ : RS d → End RGL n ( R ) . 2
Classical Schur–Weyl duality V = R n GL n ( R ) - the general linear group of degree n over R S d - the symmetric group on d letters GL n ( R ) V ⊗ d S d GL n ( R ) ∋ g : g ( v 1 ⊗ · · · ⊗ v d ) = gv 1 ⊗ · · · ⊗ gv d S d ∋ σ : ( v 1 ⊗ · · · ⊗ v d ) σ = v σ (1) ⊗ · · · ⊗ v σ ( d ) Extending the actions to the group algebras we obtain the algebra homomorphisms � V ⊗ d � ρ : RGL n ( R ) → End RS d � V ⊗ d � ψ : RS d → End RGL n ( R ) . � V ⊗ d � The endomorphism algebra S R ( n , d ) = End RS d is called Schur algebra . 2
Classical Schur–Weyl duality GL n ( R ) V ⊗ d S d GL n ( R ) ∋ g : g ( v 1 ⊗ · · · ⊗ v d ) = gv 1 ⊗ · · · ⊗ gv d S d ∋ σ : ( v 1 ⊗ · · · ⊗ v d ) σ = v σ (1) ⊗ · · · ⊗ v σ ( d ) Extending the actions to the group algebras we obtain the algebra homomorphisms � V ⊗ d � ρ : RGL n ( R ) → End RS d � V ⊗ d � ψ : RS d → End RGL n ( R ) . � V ⊗ d � The endomorphism algebra S R ( n , d ) = End RS d is called Schur algebra . We say that (classical) Schur–Weyl duality holds for a ring R if the maps ρ and ψ are surjective. 2
When does Classical Schur–Weyl duality hold? Theorem If ρ : RGL n ( R ) → S R ( n , d ) is surjective then � V ⊗ d � ψ : RS d → End RGL n ( R ) is surjective. 3
When does Classical Schur–Weyl duality hold? Theorem If ρ : RGL n ( R ) → S R ( n , d ) is surjective then � V ⊗ d � ψ : RS d → End RGL n ( R ) is surjective. R ∗ - set of all units of the commutative ring R ; 3
When does Classical Schur–Weyl duality hold? Theorem If ρ : RGL n ( R ) → S R ( n , d ) is surjective then � V ⊗ d � ψ : RS d → End RGL n ( R ) is surjective. R ∗ - set of all units of the commutative ring R ; Theorem ([4, Theorem 3.6.]) Let n , d ∈ N be natural numbers. Let R be a commutative ring with identity that contains a set S which has the following properties: ∀ x , y ∈ S , x � = y = ⇒ x − y ∈ R ∗ ; | S | > d. Then the algebra homomorphism ρ : RGL n ( R ) → S R ( n , d ) is surjective, that is, Schur–Weyl duality holds. 3
When does Classical Schur–Weyl duality hold? Theorem If ρ : RGL n ( R ) → S R ( n , d ) is surjective then � V ⊗ d � ψ : RS d → End RGL n ( R ) is surjective. R ∗ - set of all units of the commutative ring R ; Theorem ([4, Theorem 3.6.]) Let n , d ∈ N be natural numbers. Let R be a commutative ring with identity that contains a set S which has the following properties: ∀ x , y ∈ S , x � = y = ⇒ x − y ∈ R ∗ ; | S | > d. Then the algebra homomorphism ρ : RGL n ( R ) → S R ( n , d ) is surjective, that is, Schur–Weyl duality holds. ρ : RGL n ( R ) → S R ( n , d ) is not surjective F 2 , n = d = 2. 3
Schur–Weyl duality between S R ( n , d ) and S d S R ( n , d ) V ⊗ d S d 4
Schur–Weyl duality between S R ( n , d ) and S d S R ( n , d ) V ⊗ d S d � V ⊗ d � End RS d = S R ( n , d ) ∋ η : η · ( v 1 ⊗ · · · ⊗ v d ) = η ( v 1 ⊗ · · · ⊗ v d ) 4
Schur–Weyl duality between S R ( n , d ) and S d S R ( n , d ) V ⊗ d S d � V ⊗ d � End RS d = S R ( n , d ) ∋ η : η · ( v 1 ⊗ · · · ⊗ v d ) = η ( v 1 ⊗ · · · ⊗ v d ) There is an algebra homomorphism � V ⊗ d � ψ : RS d → End S R ( n , d ) . 4
Schur–Weyl duality between S R ( n , d ) and S d S R ( n , d ) V ⊗ d S d � V ⊗ d � End RS d = S R ( n , d ) ∋ η : η · ( v 1 ⊗ · · · ⊗ v d ) = η ( v 1 ⊗ · · · ⊗ v d ) There is an algebra homomorphism � V ⊗ d � ψ : RS d → End S R ( n , d ) . Theorem ([4, Corollary 3.5.]) ψ is surjective for every commutative ring R. If n ≥ d, then ψ is an isomorphism. 4
Strength of Schur–Weyl duality R - noetherian ring D = Hom R ( − , R ) - standard duality 5
Strength of Schur–Weyl duality R - noetherian ring D = Hom R ( − , R ) - standard duality The homomorphism ρ : RGL n ( R ) → S R ( n , d ) induces by restriction of scalars the functor H R : S R ( n , d )-mod → ( RGL n ( R )) d -mod 5
Strength of Schur–Weyl duality R - noetherian ring D = Hom R ( − , R ) - standard duality The homomorphism ρ : RGL n ( R ) → S R ( n , d ) induces by restriction of scalars the functor H R : S R ( n , d )-mod → ( RGL n ( R )) d -mod ⇒ H R equivalence. SW duality on R = 5
Strength of Schur–Weyl duality R - noetherian ring D = Hom R ( − , R ) - standard duality The homomorphism ρ : RGL n ( R ) → S R ( n , d ) induces by restriction of scalars the functor H R : S R ( n , d )-mod → ( RGL n ( R )) d -mod ⇒ H R equivalence. SW duality on R = ψ is related to the Schur functor F R = Hom S R ( n , d ) ( V ⊗ d , − ): S R ( n , d )-mod → RS d -mod , n ≥ d . 5
Strength of Schur–Weyl duality R - noetherian ring D = Hom R ( − , R ) - standard duality H R : S R ( n , d )-mod → ( RGL n ( R )) d -mod ⇒ H R equivalence. SW duality on R = ψ is related to the Schur functor F R = Hom S R ( n , d ) ( V ⊗ d , − ): S R ( n , d )-mod → RS d -mod , n ≥ d . S R ( n , d )-proj : S R ( n , d )-proj → add RSd DV ⊗ d ⇒ F R ψ isomorphism = equivalence. 5
Strength of Schur–Weyl duality R - noetherian ring D = Hom R ( − , R ) - standard duality H R : S R ( n , d )-mod → ( RGL n ( R )) d -mod ⇒ H R equivalence. SW duality on R = ψ is related to the Schur functor F R = Hom S R ( n , d ) ( V ⊗ d , − ): S R ( n , d )-mod → RS d -mod , n ≥ d . S R ( n , d )-proj : S R ( n , d )-proj → add RSd DV ⊗ d ⇒ F R ψ isomorphism = equivalence. The functor G R = Hom RSd ( DV ⊗ d , − ) is right adjoint to F R . The strength of SW duality on S R ( n , d ) is measured by the degree to which G R fails to be exact on RS d -mod. 5
Strength of Schur–Weyl duality R - noetherian ring D = Hom R ( − , R ) - standard duality H R : S R ( n , d )-mod → ( RGL n ( R )) d -mod ⇒ H R equivalence. SW duality on R = F R = Hom S R ( n , d ) ( V ⊗ d , − ): S R ( n , d )-mod → RS d -mod , n ≥ d . S R ( n , d )-proj : S R ( n , d )-proj → add RSd DV ⊗ d ⇒ F R ψ isomorphism = equivalence. The functor G R = Hom RSd ( DV ⊗ d , − ) is right adjoint to F R . The strength of SW duality on S R ( n , d ) is measured by the degree to which G R fails to be exact on RS d -mod. Theorem ([6, Theorem 5.1], C.) add Z Sd DV ⊗ d is exact. G F 2 G Z add F 2 Sd DV ⊗ d is not exact. 5
References i References [1] Benson, D. and Doty, S. (2009). Schur–Weyl duality over finite fields. Arch. Math. , 93(5):425–435. [2] Bryant, R. M. (2009). Lie powers of infinite-dimensional modules. Beitr. Algebra Geom. , 50(1):179–193. [3] Carter, R. W. and Lusztig, G. (1974). On the modular representations of the general linear and symmetric groups. Math. Z. , 136:193–242. [4] Cruz, T. (2018). Schur–Weyl duality over commutative rings. Communications in Algebra . [5] de Concini, C. and Procesi, C. (1976). A characteristic free approach to invariant theory. Adv. Math. , 21:330–354. 6
References ii [6] Fang, M. and Koenig, S. (2011). Schur functors and dominant dimension. Trans. Amer. Math. Soc. , 363(3):1555–1576. [7] Green, J. A. (1980). Polynomial representations of GL n , volume 830. Springer, Cham. [8] K¨ onig, S., Slung˚ ard, I. H., and Xi, C. (2001). Double centralizer properties, dominant dimension, and tilting modules. J. Algebra , 240(1):393–412. [9] Krause, H. (2015). Polynomial representations of GL ( n ) and Schur-Weyl duality. Beitr. Algebra Geom. , 56(2):769–773. [10] Rouquier, R. (2008). q -Schur algebras and complex reflection groups. Mosc. Math. J. , 8(1):119–158. [11] Schur, I. (1928). ¨ Uber die stetigen Darstellungen der allgemeinen linearen Gruppe. Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. , 1928:100–124. 7
Thank You 8
Recommend
More recommend