scattering bricks to build
play

Scattering Bricks to Build Invariants Joan Bruna, Joakim Anden, - PowerPoint PPT Presentation

Scattering Bricks to Build Invariants Joan Bruna, Joakim Anden, Stphane Mallat Laurent Sifre, Irne Waldspurger cole Normale Suprieure High Dimensional Classification CalTech 101 Anchor Joshua Tree Beaver Lotus Water


  1. Stable Translation Invariants • Invariance to translations x c ( t ) = x ( t − c ) Φ ( x c ) = Φ ( x ) . ∀ c ∈ R , Φ ( x ) Not stable 0 t | τ 0 ( t ) | k x k k Φ ( x ) � Φ ( x τ ) k � sup Φ ( x τ ) 0 • Lipschitz stable to deformations x τ ( t ) = x ( t − τ ( t )) small deformations of x = small modifications of Φ ( x ) ⇒ ⇤ τ , ⇧ Φ ( x τ ) � Φ ( x ) ⇧ ⇥ C sup t | ⌃ τ ( t ) | ⇧ x ⇧ . deformation size

  2. Stable Translation Invariants • Invariance to translations x c ( t ) = x ( t − c ) Φ ( x c ) = Φ ( x ) . ∀ c ∈ R , Φ ( x ) Not stable 0 t | τ 0 ( t ) | k x k k Φ ( x ) � Φ ( x τ ) k � sup Φ ( x τ ) Fourier invariants 0 are not stable either. • Lipschitz stable to deformations x τ ( t ) = x ( t − τ ( t )) small deformations of x = small modifications of Φ ( x ) ⇒ ⇤ τ , ⇧ Φ ( x τ ) � Φ ( x ) ⇧ ⇥ C sup t | ⌃ τ ( t ) | ⇧ x ⇧ . deformation size

  3. Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) ψ λ ( t ) = 2 − j ψ (2 − j t ) with λ = 2 − j . • Dilated: ψ λ � ( t ) | ˆ | ˆ ψ λ ( ω ) | 2 | ˆ ψ λ � ( ω ) | 2 φ ( ω ) | 2 ψ λ ( t ) λ � λ 0 ω

  4. Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) ψ λ ( t ) = 2 − j ψ (2 − j t ) with λ = 2 − j . • Dilated: ψ λ � ( t ) | ˆ | ˆ ψ λ ( ω ) | 2 | ˆ ψ λ � ( ω ) | 2 φ ( ω ) | 2 ψ λ ( t ) x ( ω ) ˆ λ � λ 0 ω Z x ? λ ( t ) = x ( u ) λ ( t − u ) du • Wavelet transform: ✓ x ? � ( t ) ◆ Wx = x ? λ ( t ) t, λ

  5. Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) ψ λ ( t ) = 2 − j ψ (2 − j t ) with λ = 2 − j . • Dilated: ψ λ � ( t ) | ˆ | ˆ ψ λ ( ω ) | 2 | ˆ ψ λ � ( ω ) | 2 φ ( ω ) | 2 ψ λ ( t ) x ( ω ) ˆ λ � λ 0 ω Z x ? λ ( t ) = x ( u ) λ ( t − u ) du • Wavelet transform: ✓ x ? � ( t ) ◆ Wx = x ? λ ( t ) t, λ � Wx � 2 = � x � 2 . Unitary:

  6. Image Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) , t = ( t 1 , t 2 ) ψ λ ( t ) = 2 − j ψ (2 − j rt ) with λ = (2 j , r ) rotated and dilated: real parts imaginary parts

  7. Image Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) , t = ( t 1 , t 2 ) ψ λ ( t ) = 2 − j ψ (2 − j rt ) with λ = (2 j , r ) rotated and dilated: ω 2 real parts imaginary parts | ˆ ψ λ ( ω ) | 2 ω 1

  8. Image Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) , t = ( t 1 , t 2 ) ψ λ ( t ) = 2 − j ψ (2 − j rt ) with λ = (2 j , r ) rotated and dilated: ω 2 real parts imaginary parts | ˆ ψ λ ( ω ) | 2 ω 1

  9. Image Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) , t = ( t 1 , t 2 ) ψ λ ( t ) = 2 − j ψ (2 − j rt ) with λ = (2 j , r ) rotated and dilated: ω 2 real parts imaginary parts | ˆ ψ λ ( ω ) | 2 ω 1

  10. Image Wavelet Transform • Complex wavelet: ψ ( t ) = ψ a ( t ) + i ψ b ( t ) , t = ( t 1 , t 2 ) ψ λ ( t ) = 2 − j ψ (2 − j rt ) with λ = (2 j , r ) rotated and dilated: ω 2 real parts imaginary parts | ˆ ψ λ ( ω ) | 2 ω 1 ✓ x ? � ( t ) ◆ • Wavelet transform: Wx = x ? λ ( t ) t, λ Unitary: � Wx � 2 = � x � 2 .

  11. Wavelet Translation Invariance x ? λ 1 ( t ) = x ? a λ 1 ( t ) + i x ? b λ 1 ( t )

  12. Wavelet Translation Invariance q λ 1 ( t ) | 2 + | x ? b | x ? a λ 1 ( t ) | 2 pooling | x ? λ 1 ( t ) | = • The modulus | x ? λ 1 | is a regular envelop

  13. Wavelet Translation Invariance | x ? λ 1 | ? � ( t ) • The modulus | x ? λ 1 | is a regular envelop • The average | x ? λ 1 | ? � ( t ) is invariant to small translations relatively to the support of φ .

  14. Wavelet Translation Invariance | x ? λ 1 | ? � ( t ) • The modulus | x ? λ 1 | is a regular envelop • The average | x ? λ 1 | ? � ( t ) is invariant to small translations relatively to the support of φ . Z φ → 1 | x ? λ 1 | ? � ( t ) = lim | x ? λ 1 ( u ) | du = k x ? λ 1 k 1

  15. Recovering Lost Information | x ? λ 1 | | x ⇤⇥ λ 1 | ⇤ �

  16. Recovering Lost Information | x ? λ 1 | | x ⇤⇥ λ 1 | ⇤ � • The high frequencies of | x ? λ 1 | are in wavelet coe ffi cients: ✓ ◆ | x ? λ 1 | ? � ( t ) W | x ? λ 1 | = | x ? λ 1 | ? λ 2 ( t ) t, λ 2

  17. Recovering Lost Information | x ? λ 1 | | x ⇤⇥ λ 1 | ⇤ � • The high frequencies of | x ? λ 1 | are in wavelet coe ffi cients: ✓ ◆ | x ? λ 1 | ? � ( t ) W | x ? λ 1 | = | x ? λ 1 | ? λ 2 ( t ) t, λ 2 • Translation invariance by time averaging the amplitude: | | x ? λ 1 | ? λ 2 | ? � ( t ) ∀ � 1 , � 2 ,

  18. Deep Convolution Network x

  19. Deep Convolution Network x x ? � | W 1 | | x ? λ 1 |

  20. Deep Convolution Network x x ? � | W 1 | | x ? λ 1 | | x ? λ 1 | ? � | W 2 | || x ? λ 1 | ? λ 2 |

  21. Deep Convolution Network x x ? � | W 1 | | x ? λ 1 | | x ? λ 1 | ? � | W 2 | || x ? λ 1 | ? λ 2 | || x ? λ 1 | ? λ 2 | ? � | W 3 | ||| x ? λ 1 | ? λ 2 | ? λ 3 |

  22. Scattering Vector Network ouptut:   x ⇤� ( u ) | x ⇤ ⇥ λ 1 | ⇤ � ( u )     || x ⇤⇥ λ 1 | ⇤ ⇥ λ 2 | ⇤ � ( u ) Sx =     ||| x ⇤⇥ λ 2 | ⇤ ⇥ λ 2 | ⇤ ⇥ λ 3 | ⇤ � ( u )   ... u, λ 1 , λ 2 , λ 3 ,...

  23. Amplitude Modulation log( λ 1 ) | x ? λ 1 ( t ) | First − order windowed scattering (small scale) log( ! 1 ) t t log( λ 1 ) | x ? λ 1 | ? � ( t ) First − order windowed scattering (large scale) log( ! 1 ) t t log( λ 2 ) || x ? λ 1 | ? λ 2 | ? � ( t ) for � 1 = log(1977) Second − order windowed scattering (large scale) Band #75 log( ! 2 ) 18 Hz t t

  24. Amplitude Modulation log( λ 1 ) | x ? λ 1 ( t ) | First − order windowed scattering (small scale) log( ! 1 ) t t log( λ 1 ) | x ? λ 1 | ? � ( t ) First − order windowed scattering (large scale) log( ! 1 ) t t log( λ 2 ) || x ? λ 1 | ? λ 2 | ? � ( t ) for � 1 = log(1977) Second − order windowed scattering (large scale) Band #75 log( ! 2 ) 18 Hz t t

  25. Amplitude Modulation log( λ 1 ) | x ? λ 1 ( t ) | First − order windowed scattering (small scale) log( ! 1 ) t t log( λ 1 ) | x ? λ 1 | ? � ( t ) First − order windowed scattering (large scale) log( ! 1 ) t t log( λ 2 ) || x ? λ 1 | ? λ 2 | ? � ( t ) for � 1 = log(1977) Second − order windowed scattering (large scale) Band #75 log( ! 2 ) 18 Hz t t

  26. Amplitude Modulation log( λ 1 ) | x ? λ 1 ( t ) | First − order windowed scattering (small scale) 1977 Hz log( ! 1 ) t t log( λ 1 ) | x ? λ 1 | ? � ( t ) First − order windowed scattering (large scale) log( ! 1 ) t t log( λ 2 ) || x ? λ 1 | ? λ 2 | ? � ( t ) for � 1 = log(1977) Second − order windowed scattering (large scale) Band #75 log( ! 2 ) 18 Hz t t

  27. Cascade of Contractions x | W 1 | | W 2 | | W 3 |

  28. Cascade of Contractions x x ? � | W 1 | | x ? λ 1 | ? � | W 2 | || x ? λ 1 | ? λ 2 | ? � | W 3 |

  29. Cascade of Contractions x x ? � | W 1 | | x ? λ 1 | ? � | W 2 | || x ? λ 1 | ? λ 2 | ? � | W 3 | • Cascade of contractive operators ⇤ | W k | x � | W k | x 0 ⇤ ⇥ ⇤ x � x 0 ⇤

  30. Cascade of Contractions x x ? � | W 1 | | x ? λ 1 | ? � | W 2 | || x ? λ 1 | ? λ 2 | ? � | W 3 | • Cascade of contractive operators ⇤ | W k | x � | W k | x 0 ⇤ ⇥ ⇤ x � x 0 ⇤ with � | W k | x � = � x � .

  31. Scattering Properties   x ⇤� ( u ) | x ⇤ ⇥ λ 1 | ⇤ � ( u )     Sx = || x ⇤⇥ λ 1 | ⇤ ⇥ λ 2 | ⇤ � ( u )     ||| x ⇤⇥ λ 2 | ⇤ ⇥ λ 2 | ⇤ ⇥ λ 3 | ⇤ � ( u )   ... u, λ 1 , λ 2 , λ 3 ,... Theorem : For appropriate wavelets, a scattering is contractive k Sx � Sy k  k x � y k preserves norms k Sx k = k x k

  32. Scattering Properties   x ⇤� ( u ) | x ⇤ ⇥ λ 1 | ⇤ � ( u )     Sx = || x ⇤⇥ λ 1 | ⇤ ⇥ λ 2 | ⇤ � ( u )     ||| x ⇤⇥ λ 2 | ⇤ ⇥ λ 2 | ⇤ ⇥ λ 3 | ⇤ � ( u )   ... u, λ 1 , λ 2 , λ 3 ,... Theorem : For appropriate wavelets, a scattering is contractive k Sx � Sy k  k x � y k preserves norms k Sx k = k x k stable to deformations x τ ( t ) = x ( t − τ ( t )) k Sx � Sx τ k  C sup t | r τ ( t ) | k x k

  33. Scattering Properties   x ⇤� ( u ) | x ⇤ ⇥ λ 1 | ⇤ � ( u )     Sx = || x ⇤⇥ λ 1 | ⇤ ⇥ λ 2 | ⇤ � ( u )     ||| x ⇤⇥ λ 2 | ⇤ ⇥ λ 2 | ⇤ ⇥ λ 3 | ⇤ � ( u )   ... u, λ 1 , λ 2 , λ 3 ,... Theorem : For appropriate wavelets, a scattering is contractive k Sx � Sy k  k x � y k preserves norms k Sx k = k x k stable to deformations x τ ( t ) = x ( t − τ ( t )) k Sx � Sx τ k  C sup t | r τ ( t ) | k x k ⇒ linear discriminative classification from Φ x = Sx

  34. Linearized Classification Joan Bruna computed with PCA. X 2 X 1 MNIST data basis:

  35. Linearized Classification Joan Bruna • Each class X k is represented by a scattering centroid E ( SX k ) A ffi ne space model A k = E ( SX k ) + V k . computed with PCA. E ( SX 2 ) X 2 X 1 E ( SX 1 ) A 2 S A 1 MNIST data basis:

  36. Linearized Classification Joan Bruna • Each class X k is represented by a scattering centroid E ( SX k ) A ffi ne space model A k = E ( SX k ) + V k . computed with PCA. E ( SX 2 ) X 2 X 1 E ( SX 1 ) A 2 S A 1 x MNIST data basis:

  37. Linearized Classification Joan Bruna • Each class X k is represented by a scattering centroid E ( SX k ) A ffi ne space model A k = E ( SX k ) + V k . computed with PCA. E ( SX 2 ) X 2 X 1 E ( SX 1 ) A 2 Sx S A 1 x MNIST data basis:

  38. Linearized Classification Joan Bruna • Each class X k is represented by a scattering centroid E ( SX k ) A ffi ne space model A k = E ( SX k ) + V k . computed with PCA. E ( SX 2 ) X 2 X 1 E ( SX 1 ) A 2 Sx S A 1 x MNIST data basis:

  39. Scattering Moments The scattering transform of a stationary process X ( t )   X ? � ( t ) | X ? λ 1 | ? � ( t )     SX ( t ) = || X ? λ 1 | ? λ 2 | ? � ( t )     ||| X ? λ 2 | ? λ 2 | ? λ 3 | ? � ( t )   ... λ 1 , λ 2 , λ 3 ,... is an estimator of the expected scattering of X ( t )   E ( X ) E ( | X ? λ 1 | )     SX = E ( || X ? λ 1 | ? λ 2 | )     E ( ||| X ? λ 2 | ? λ 2 | ? λ 3 | )   ... λ 1 , λ 2 , λ 3 ,...

  40. Textures with Same Spectrum x ( t ): stationary process Fourier Textures Power Spectrum x ( t ) ω 1 ω 2 ω 1 ω 2

  41. Textures with Same Spectrum x ( t ): stationary process Fourier Wavelet Scattering Textures Power Spectrum x ( t ) | x ? λ 1 | ? � ω 1 ω 2 ω 1 ω 2 window size = image size

  42. Textures with Same Spectrum x ( t ): stationary process Fourier Wavelet Scattering Textures Power Spectrum x ( t ) | x ? λ 1 | ? � || x ? λ 1 | ? λ 2 | ? � ω 1 ω 2 ω 1 ω 2 window size = image size

  43. Sounds with Same Spectrum Fourier X : stationary process Spectrum log( λ 1 ) ω | x ⇥� λ 1 | ( t ) J. McDermott First − order windowed scattering (small scale) log( � 1 ) t log( λ 1 ) | x ? λ 1 | ? � ( t ) 2 s window First − order windowed scattering (large scale) log( � 1 ) log( λ 2 ) t || x ? λ 1 | ? λ 2 | ? � ( t ) for � 1 = 2000 Second − order windowed scattering (large scale) Band #51 log( � 2 ) t t

  44. Sounds with Same Spectrum Fourier X : stationary process Spectrum log( λ 1 ) ω | x ⇥� λ 1 | ( t ) J. McDermott First − order windowed scattering (small scale) log( � 1 ) t log( λ 1 ) | x ? λ 1 | ? � ( t ) 2 s window First − order windowed scattering (large scale) log( � 1 ) log( λ 2 ) t || x ? λ 1 | ? λ 2 | ? � ( t ) for � 1 = 2000 Second − order windowed scattering (large scale) Band #51 log( � 2 ) t t

  45. Representation of Random Processes • An expected scattering is a non-complete representation   E ( X ) = E ( U 0 X ) E ( | X ⇥ � λ 1 | ) = E ( U 1 X )     SX = E ( || X ⇥ � λ 1 | ⇥ � λ 2 | ) = E ( U 2 X )     E ( ||| X ⇥ � λ 2 | ⇥ � λ 2 | ⇥ � λ 3 | ) = E ( U 3 X )   ... λ 1 , λ 2 , λ 3 ,... Theorem (Boltzmann) The distribution p ( x ) which satisfies Z R N U m x p ( x ) dx = E ( U m X ) R and maximizes the entropy − p ( x ) log p ( x ) dx ∞ p ( x ) = 1 ⇣ ⌘ X Z exp λ m . U m x can be written: m =1

  46. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  47. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  48. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  49. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  50. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  51. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  52. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  53. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  54. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  55. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  56. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  57. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  58. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  59. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  60. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  61. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party

  62. Synthesis from Second Order Joakim Anden Joan Bruna • Maximum entropy estimation of X ( t ) : - Gaussian model from N power spectrum coe ffi cients. - Scattering model from (log 2 N ) 2 / 2 1st & 2nd orders. J. McDermott textures Original Gaussian Model Scattering Moments JackHammer Water Applause Paper Cocktail Party Not good for everything: learn from mistakes.

  63. Classification of Textures J. Bruna CUREt database 61 classes � Texte Supervised Linear Sx x y Classifier: PCA/SVM Training Fourier Histogr. Scattering per class Spectr. Features 46 1% 1% 0 . 2 %

  64. Wavelet Transform on a Group Laurent Sifre • Roto-translation group G = { g = ( r, t ) ∈ SO (2) × R 2 } ( r, t ) . x ( u ) = x ( r − 1 ( u − t ))

  65. Wavelet Transform on a Group Laurent Sifre • Roto-translation group G = { g = ( r, t ) ∈ SO (2) × R 2 } ( r, t ) . x ( u ) = x ( r − 1 ( u − t )) Z 0 � 1 g ) dg 0 X ( g 0 ) φ ( g • Averaging on G : X ~ φ ( g ) = G

Recommend


More recommend