scalable routing easy as pie a practical isometric
play

Scalable Routing Easy as PIE: a Practical Isometric Embedding - PowerPoint PPT Presentation

Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol Julien Herzen (EPFL) joint work with Cedric Westphal (Huawei Innovations) Patrick Thiran (EPFL) October 18th, 2011 1 / 18 Internet routing has a scalability problem from


  1. Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol Julien Herzen (EPFL) joint work with Cedric Westphal (Huawei Innovations) Patrick Thiran (EPFL) October 18th, 2011 1 / 18

  2. Internet routing has a scalability problem from [Andersen et al. ’08] • Costly recomputation of tables • Instabilities • Costly lookups in huge tables • Energy hungry • Heavily relies on Moore’s law to keep up • Could get much worse with IPv6. . . 2 / 18

  3. Fundamental limit • Stretch: Length of a path found by a routing algorithm, divided by the shortest possible path length [Gavoille et al. ’97] For a network of n nodes, guaranteeing a stretch strictly below 3 requires routing tables of size O ( n ) ⇒ Consider schemes that may inflate path length to achieve sub-linear scalability 3 / 18

  4. Geometric routing Each node needs to know only the coordinates of its neighbors Forwarding: pick the neighbor closest to the destination y d × s x Problem: The packets can meet a dead end! 4 / 18

  5. The Internet has a hierarchical structure 5 / 18

  6. Tree routing • Trees are easy to build distributively • They can ensure 100% routing success (exactly one path between any two nodes) d stretch = 1 . 5 s 6 / 18

  7. Tree routing • Trees are easy to build distributively • They can ensure 100% routing success (exactly one path between any two nodes) d stretch = 1 . 5 s Tree routing is not efficient. . . 6 / 18

  8. PIE embeds trees into metric spaces • Root has coordinate 0 • Binary representation of each child − 1 , − 1 , − 1 − 1 , − 1 , 1 0 stretch = 1 . 5 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 − 2 , 2 , − 2 7 / 18

  9. PIE embeds trees into metric spaces • Then recursively, each parent: ◮ Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent ◮ If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates − 1 , − 1 , − 1 2 , − 2 , − 2 , − 1 , − 1 − 1 , − 1 , 1 − 2 , − 2 , 2 0 stretch = 1 . 5 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 7 / 18

  10. PIE embeds trees into metric spaces • Then recursively, each parent: ◮ Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent ◮ If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates − 1 , − 1 , − 1 2 , − 2 , − 2 , − 1 , − 1 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 7 / 18

  11. PIE embeds trees into metric spaces • Then recursively, each parent: ◮ Send its coordinates to its children. The children keep the signs, but increase absolute values of these coordinates by link cost to parent ◮ If more than one child: the parent also sends the binary representation of each child, that is appended to the coordinates − 1 , − 1 , − 1 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 7 / 18

  12. Routing using the embedding Distance computation: l ∞ -norm on the common coordinates − 1 , − 1 , − 1 d 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 8 / 18

  13. Routing using the embedding Distance computation: l ∞ -norm on the common coordinates − 1 , − 1 , − 1 d 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 8 / 18

  14. Routing using the embedding Distance computation: l ∞ -norm on the common coordinates − 1 , − 1 , − 1 d 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 8 / 18

  15. Routing using the embedding Distance computation: l ∞ -norm on the common coordinates − 1 , − 1 , − 1 d 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 8 / 18

  16. Routing using the embedding Distance computation: l ∞ -norm on the common coordinates − 1 , − 1 , − 1 d 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 8 / 18

  17. Routing using the embedding Distance computation: l ∞ -norm on the common coordinates − 1 , − 1 , − 1 d 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 stretch = 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 8 / 18

  18. PIE embeds trees into metric spaces • This approach still guarantees 100% routing success • It is better than tree routing • But still lacks some topological information in some situations. . . − 1 , − 1 , − 1 d 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 − 2 , − 2 , 2 stretch = 1 . 5 0 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 stretch = 1 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 9 / 18

  19. PIE embeds trees into metric spaces • This approach still guarantees 100% routing success • It is better than tree routing • But still lacks some topological information in some situations. . . − 1 , − 1 , − 1 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 d stretch = 1 . 5 0 − 2 , − 2 , 2 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 stretch = 2 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 9 / 18

  20. PIE embeds trees into metric spaces • This approach still guarantees 100% routing success • It is better than tree routing • But still lacks some topological information in some situations. . . − 1 , − 1 , − 1 2 , − 2 , − 2 , − 1 , − 1 4 , − 4 , − 4 , − 3 , 3 − 1 , − 1 , 1 d 0 − 2 , − 2 , 2 3 , − 3 , − 3 , − 2 , 2 − 1 , 1 , − 1 1 , − 1 , − 1 stretch = 1 . 5 − 1 , 1 , 1 2 , − 2 , − 2 , − 1 , 1 stretch = 2 − 2 , 2 , − 2 − 2 , 2 , 2 s 2 , − 2 , − 2 , 1 , − 1 2 , − 2 , − 2 , 1 , 1 9 / 18

  21. Solution: build several smaller trees • Easy to build distributively (random self-elected roots) • Still scalable if each node belongs to O (log n ) trees 2 , − 1 , − 1 − 2 , 2 − 2 , − 2 1 0 2 , − 1 , 1 − 1 , − 1 2 , 1 , − 1 stretch = 1 − 1 , 1 2 , − 2 0 − 1 − 2 1 , 1 1 , − 1 10 / 18

  22. Solution: build several smaller trees • Easy to build distributively (random self-elected roots) • Still scalable if each node belongs to O (log n ) trees 2 , − 1 , − 1 − 2 , 2 − 2 , − 2 1 d 0 2 , − 1 , 1 − 1 , − 1 2 , 1 , − 1 stretch = 1 − 1 , 1 2 , − 2 0 − 1 − 2 s 1 , 1 1 , − 1 10 / 18

  23. Solution: build several smaller trees • Easy to build distributively (random self-elected roots) • Still scalable if each node belongs to O (log n ) trees 2 , − 1 , − 1 − 2 , 2 − 2 , − 2 1 d 0 2 , − 1 , 1 − 1 , − 1 2 , 1 , − 1 stretch = 1 − 1 , 1 2 , − 2 0 − 1 − 2 s 1 , 1 1 , − 1 10 / 18

  24. Trees covering several levels • Forwarding: use common tree that provides smallest distance • Big trees: good for long paths • Small trees: good for short paths • Match well the self-similar structure of the Internet • O (log n ) levels → only O (log n ) set of coordinates per node Level 1: Level 2: 11 / 18

  25. Trees covering several levels 12 / 18

  26. Trees covering several levels 12 / 18

  27. Trees covering several levels 12 / 18

  28. Trees covering several levels 12 / 18

  29. Trees covering several levels 12 / 18

Recommend


More recommend