rrt connect an efficient approach to single query path
play

RRT-Connect: An Efficient Approach to Single-Query Path Planning - PowerPoint PPT Presentation

RRT-Connect: An Efficient Approach to Single-Query Path Planning James J. Kuffner, Jr. Steven M. LaValle ICRA 2000 Presented by Manel Baradad 6.882 Embodied Intelligence Spring 2020 Problem Single-query path planning, from start to goal. In


  1. RRT-Connect: An Efficient Approach to Single-Query Path Planning James J. Kuffner, Jr. Steven M. LaValle ICRA 2000 Presented by Manel Baradad 6.882 Embodied Intelligence Spring 2020

  2. Problem Single-query path planning, from start to goal. In “high-dimensional” configuration spaces Find path from A to B Move an object: from State A to State B 2

  3. Two Ingredients ● Rapidly-exploring random trees (RRT): ● 2 x RRT: One from start and one from goal Greedy Heuristic to connect them RRT Exploration 3

  4. Rapidly-exploring random trees (RRT’s) K = 0 4

  5. Rapidly-exploring random trees (RRT’s) K = T 5

  6. Rapidly-exploring random trees (RRT’s) K = T q sampled uniformly at random over all space 6

  7. Rapidly-exploring random trees (RRT’s) K = T Closest to q in the actual graph 7

  8. Rapidly-exploring random trees (RRT’s) K = T q new :closest to q within Ɛ from q near 8 If no q new, repeat random q

  9. Rapidly-exploring random trees (RRT’s) Repeat for K = T + 1 9

  10. Rapidly-exploring random trees (RRT’s) Simple uniform sampling of q favors exploration P(node being q near ) ~ size of the Voronoi region ~ unexplored region 10

  11. Rapidly-exploring random trees (RRT’s) Simple uniform sampling of q favors exploration P(node being q near ) ~ size of the Voronoi region ~ unexplored region High P of being q near Low P of being q near 11

  12. 2 x RRT How to dig a tunnel from A to B? Just start caving from each side Worse case you have two tunnels! Just build two RRT’s from start and goal. Have some attracting heuristic so that they meet. 12

  13. RRT-Connect K = 0 13

  14. RRT-Connect K = T 14

  15. RRT-Connect K = T q at random uniformly 15

  16. RRT-Connect K = T 16

  17. RRT-Connect K = T 17

  18. RRT-Connect K = T Connect B : Previous q new acts as q for B 18

  19. RRT-Connect K = T Connect B : Previous q new acts as q for B 19

  20. RRT-Connect K = T 20

  21. RRT-Connect K = T + 1 Repeat, swapping behavior between A and B 21

  22. Examples 22

  23. Improvement: RRT* Idea: store and use a cost per node (distance to A/B). 1) Expand minimum costs: ~When adding nodes, add the ones of minimum cost. 23

  24. Improvement: RRT* Idea: store and use a cost per node (distance to A/B). 2) Update costs: ~When a new node is added, look in its neighborhood to see if the tree can be rewired to reduce costs q new q new q A q A 24

  25. RRT-connect A* (Shakey paper) Randomized Non-randomized Greedy heuristic Admissible heuristic Suboptimal Optimal Faster for “typical“ problems Slower but optimal 25

  26. Open question Would it be useful to have N RTTs expanded from N states instead of just 2 (start and goal)? What these states would correspond to? How much could it be parallelized? 26

Recommend


More recommend