Role of Technology in Reducing CO 2 to Zero Nebojsa Nakicenovic Deputy Director General International Institute for Applied Systems Analysis Former Professor of Energy Economics Vienna University of Technology 15 th IAEE European Conference 2017, Heading Towards Sustainable Energy Systems, Evolution or Revolution, Vienna – 3-6 September 2017
Nakicenovic Nakicenovic 2017 #2 2017 #2
Supply Technologies Cost Trends 230GW @ $0.8/W Nakicenovic Nakicenovic 2017 #3 2017 #3 Source: Grubler et al, 2012
The Paris Agreement Bildquelle: https://www.wmo.int/media/ Mobilizing $100 Limiting global Achieving net-zero Regular review and billion a year in warming to GHG emissions by mid of improvement of nationally support by 2020 “well below” the 21st century determined contributions through 2025 2 degrees celsius Nakicenovic Source: Schellnhuber, 2016 2017 #4
100,000-year ice-core record Source: Data from Petit et al. 1999, labeled as in Young and Steffen 2009. Nakicenovic Rockström IUCN, 2017 #5
Tipping Elements & Paris Adapted from Schellnhuber et al. 2016 Nakicenovic Rockström IUCN, 2017 #6
Cumulative Emissions & Temperature Nakicenovic Nakicenovic 2017 #7 2017 #7 Source: IPCC WGI, 2013
Net-Negative CO 2 Emissions Max. temperature change in 21th century Net carbon emission (in year 2100) net negative carbon emissions NO Scenarios with net negative Emissions above ~ 2.8 degree 3.0 Max. temperature change [K] 2.5 2.0 1.5 NO Scenarios without net negative Emissions below ~ 1.5 degree 1.0 60 40 20 0 -20 -40 -60 Net carbon emissions in 2100 [Gt CO2] Nakicenovic Nakicenovic 2017 #8 2017 #8
Global Primary Energy Historical Evolution 1200 Other renewables Nuclear Gas 1000 Oil Coal Biomass 800 Mikrochip Kommerzielle Luftfahrt Nuklear- energie EJ 600 Renewables Fernseher Nuclear 400 Vakuumröhre Gas Ottomotor Elektrischer Dampf- Motor Oil maschine 200 Coal Biomass 0 1850 1900 1950 2000 2050 Nakicenovic Nakicenovic 2017 #9 2017 #9
Global Primary Energy A Transformational Pathway 1200 Energy savings (efficiency, conservation, Savings and behavior) Other renewables ~40% improvement by 2030 Nuclear 1000 Gas Oil ~30% renewables by 2030 Coal 800 Biomass EJ 600 Renewables Nat-gas-CCS Nuclear Coal-CCS 400 Gas Oil Bio-CCS – negative CO 2 200 Coal Biomass 0 1850 1900 1950 2000 2050 Nakicenovic Nakicenovic 2017 #10 2017 #10 Source: Riahi et al, 2012
Globale Primärenergie 1200 Energie Einsparungen (Effizienz, Savings Umwandlung und Verhalten) Other renewables ~50% Verbesserung bis 2030 Nuclear 1000 Gas Oil Coal ~50% EE bis 2030 800 Biomass ≈ 1.5 o C EJ 600 Renewables Gas → immediate Peak Nuclear 400 Oil 200 Coal Biomass 0 1850 1900 1950 2000 2050 #12
Nakicenovic Nakicenovic 2017 #13 2017 #13 Pictures: Courtesy of Charlie Wilson
“Learning” Through Scale Economies of scale, US wind turbines Nakicenovic Nakicenovic 2017 #14 2017 #14 Source: Grubler et al. ALPS-2012t
Possible transformational technologies Nakicenovic 2017 #15
NET Power Breaks Ground on Demonstration Plant for Oxyfuel, Nantural Gas ZEP, La Porte, Texas Nakicenovic 2017 #16
Transformational Change 1850 1900 1950 2000 2050 Nakicenovic 2017 #17 Source: After Granger Morgan, 2013 17
Disruptive Change Darum geht zu allen Völkern […] und lehrt sie alles zu befolgen was ich Euch geboten habe. Seid gewiss: Ich bin bei euch alle Tage bis ans Ende der Welt. Nakicenovic Nakicenovic 2017 #18 2017 #18 Source: Campanale, Carobntracker
THANK YOU naki@iiasa.ac.at
Recommend
More recommend