role of amplitude fluctuations in the bkt transition
play

Role of amplitude fluctuations in the BKT transition Outline - PowerPoint PPT Presentation

Role of amplitude fluctuations in the BKT transition Outline Motivations Universality of 2d Bose gas XY model XY critical temperatures Villain model Conclusions O(2) model Future perspectives Traditional FRG


  1. Role of amplitude fluctuations in the BKT transition

  2. Outline • Motivations • Universality of 2d Bose gas • XY model • XY critical temperatures • Villain model • Conclusions • O(2) model • Future perspectives • Traditional FRG picture • Amplitude and phase representation

  3. Motivations • Topological phase transitions are widely present in 2d • Realization of 2d BEC-BCS crossover with BKT physics (Heidelberg) • Inconsistency of traditional FRG picture • Vortex core energy effects in superconductors • Long range Ising model and Kondo problem

  4. Phase only action: XY model X β H XY = − K [cos ( θ i − θ j ) − 1] h ij i Low temperature Small displacements expansion around θ i = θ j β H sw = K Z ( r θ ) 2 d 2 x. 2 Non-periodic

  5. Critical phase at all temperatures Spin-spin correlation: G ij = h cos( θ i � θ j ) i . Power law behavior at all temperatures: ⇣ a 1 ⌘ M ( x ) = e − 1 2 π K K G (0) → M L ∝ L 1 ⇣ a π ⌘ 1 2 π K K [ G ( x ) − G (0)] ∝ G ( x ) = e x

  6. Single vortex configuration F = U − TS = ( π J − 2 T ) log( L/a ) Entropy Energy We expect a proliferation of vortex configuration if T > π J 2

  7. Villain model Pure phase action with quadratic periodic term X V ( θ − θ 0 ) S [ θ ] = n.n. V 0 ( x ) = − K v X e V ( x ) = e V 0 ( x − 2 π m ) 2 x 2 m Vortex unbinding Conjecture XY model can be described effectively by villain model with K v = f ( K )

  8. Spin waves vs vortexes r θ = j = j ? + j k • Spin waves • Vortexes r · j ⊥ = 0 r ⇥ j k = 0 I Z X j ⊥ dl = 2 π q i j ? · j k d r = 0 i β H = β H sw + β H v Coulomb gas Hamiltonian

  9. Continuous field theory: O(2) model ⇢ 1 � Z 2 ∂ µ ϕ∂ µ ϕ ∗ − µ | ϕ | 2 + U d 2 x 2 | ϕ | 4 S [ ϕ , ϕ ∗ ] = ϕ = √ ρ e i θ Madelung representation ⇢ 1 � Z 8 ρ∂ µ ρ∂ µ ρ + ρ 2 ∂ µ θ∂ µ θ − µ ρ + U d 2 x 2 ρ 2 S [ ρ , θ ] = Frozen amplitude ρ = ρ 0 + δρ δρ ⌧ ρ 0 fluctuations Z n ρ 0 o d 2 x S [ θ ] = 2 ∂ µ θ∂ µ θ

  10. Same universality of the O(2) X H XY = − J ( s x,i s x,j + s y,i s y,j ) , h ij i Hubbard-Stratonovich Transformation S [ ϕ ] = S kin [ ϕ ] + S pot [ ϕ ] S kin [ ϕ ] = 1 " ! # r + Jd + µ Z β X ϕ q ε ( q ) ϕ − q . d d x | ϕ | 2 S pot [ ϕ ] = 2 J ( Jd + µ ) ϕ − U 2 J q ε ( q ) = 2( Jd + µ ) d − ε 0 ( q ) J ε 0 ( q ) + µ.

  11. Dual Mapping Sum over first neighbors of a periodic interaction energy X S [ θ ] = V ( θ i − θ j ) h ij i Transformation Z dx to variables on the dual ˜ 2 π e V ( x ) − iqx = e V ( q ) lattice S [˜ V (˜ θ i − ˜ q j ˜ ˜ X X θ ] = θ i ) + 2 π i θ j h ij i j

  12. Sine-Gordon Model XY Model Coulomb Gas � � r j − r i X � � X H = − q i q j log H = − J cos ( θ i − θ j ) � � a � � i 6 = j h ij i sine-Gordon Z d d x { ∂ µ ϕ∂ µ ϕ + u (1 − cos( βϕ )) } S = U(1) field theory Z d d x { ∂ µ ϕ ∗ ∂ µ ϕ + U ( ϕ ∗ ϕ ) } S =

  13. Unit charge approximation: sine-Gordon model ⇢ 1 � Z 2 ∂ µ ˜ θ∂ µ ˜ θ + u cos( β ˜ d 2 x S [ θ ] = θ ) √ β = 2 π K 0 . 7 0 . 6 0 . 5 ∂ t K k = − π g 2 k K 2 k , 0 . 4 u ✓ 2 ◆ 0 . 3 ∂ t g k = π π − K k g k 0 . 2 0 . 1 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 K

  14. Functional RG Exact flow equation for the effective action ✓ ◆ ϕ ] = 1 ∂ t R k ∂ t Γ k [ ˜ 2Tr Γ (2) + R k k 0 ∼ a − 1 >> 1 : k ∼ L − 1 ∼ N − 1 scale ultraviolet scale d : Γ k 0 [ ˜ ϕ ] = S [ ˜ ϕ ] = ⇒ Γ k [ ˜ ϕ ] = ⇒ Γ [ ˜ ϕ ] k ≡ 0 k 0 > k > 0 ✓ k ◆ t = log k 0

  15. Momentum shells 2 . 0 Exponential ⌘ − 1 Power Law ⇣ 1 . 5 Γ (2) + R k G k = Optimized R k 1 . 0 Fourier space 0 . 5 q 2 + m 2 � − 1 � R k ≡ 0 = ⇒ G k 0 ( q ) = 0 . 0 0 . 0 2 . 5 5 . 0 7 . 5 10 . 0 z P.T. m = 0 fluctuations 1 . 00 IR Regulator Physical Exponential d d q Z 0 . 75 ∆ S k = (2 π ) d ϕ ( q ) R k ( q ) ϕ ( − q ) Power Law G k Optimized 0 . 50 R k ( q ) � 1 if q > k 0 . 25 R k ( q ) ⌧ 1 if q < k 0 . 00 0 . 0 2 . 5 5 . 0 7 . 5 10 . 0 z

  16. FRG Picture U ( ρ ) = λ k 2 ( ρ − κ k ) 2 15 0 . 2 10 0 . 1 λ k η ˜ 5 0 . 0 − 0 . 1 0 . 0 0 . 3 0 . 6 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 κ k ˜ κ k Migdal Smooth Vanishing Approximation Crossover flow

  17. FRG Picture: Madelung representation ⇢ 1 � Z 8 ρ∂ µ ρ∂ µ ρ + ρ d d x Γ k [ ρ , θ ] = 2 ∂ µ θ∂ µ θ + U k ( ρ ) Two phases? 3 . 0 Irrelevance of the coupling? 2 . 5 NO 2 . 0 ⇢ 1 � λ k Z 8 ρ∂ µ ρ∂ µ ρ + ρ 1 . 5 ˜ d 2 x 2 ∂ µ θ∂ µ θ + µ ρ 1 . 0 Gaussian should not flow! 0 . 5 0 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 κ k ˜

  18. Subtraction of Gaussian contribution 3 . 0 Always Minimum relevant Depletion 2 . 5 interaction 2 . 0 λ k 1 . 5 ˜ 1 . 0 Symmetric phase 0 . 5 0 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 κ k ˜

  19. 2d Bose-Gas � r 2 Z ⇢ ✓ ◆ � ψ ( x ) + U ψ † ( x ) 2 ψ † ( x ) ψ † ( x ) ψ ( x ) ψ ( x ) d 2 x H bg = 2 m � µ Quasi-condensation Non degenerate gas µ � T ! n k / e − βε k T Degenerate gas µ ⌧ T ! n k / ε k + | µ | Low energy action ⇢ 1 � Z 2 m ∂ µ ϕ∂ µ ϕ ⇤ − µ 0 | ϕ | 2 + U d 2 x 2 | ϕ | 4 S [ ϕ , ϕ ⇤ ] =

  20. Universality at “weak” coupling • Small quantum renormalization of U can be neglected. ln ξ µ µ c = mTU • Critical chemical potential π mU • Universal variable X = µ − µ c mTU • All models share same behavior for X ⌧ 1 /mU • Superfluid density ρ s = 2 mT f ( X ) π

  21. FRG routine • Run the amplitude flow with κ Λ = µ/U • Extract the expectation 
 � U 0 ( ρ ) = 0 � � value for the field κ r • Initiate the SG flow K = κ r • Extract the renormalized 
 K ∗ = ρ s superfluid stiffness

  22. Looking for µ c 3 . 0 1 . 50 Logarithmic high U 6.0e-01 correction 4.2e-01 2 . 5 3.0e-01 1.5e-01 2 . 0 1 . 25 7.5e-02 3.8e-02 mTU ρ s 1 . 5 µ c 1.9e-02 1 . 0 1 . 00 0 . 5 0 . 0 0 . 75 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 0 . 0 0 . 5 1 . 0 µ/U mU

  23. Universality recovered 4 . 0 2 . 5 3 . 5 2 . 0 MC Data 3 . 0 2 . 5 1 . 5 f ( X ) 2 . 0 ρ s 1 . 0 Collapsed curves 1 . 5 Average Curve 1 . 0 0 . 5 0 . 5 0 . 0 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 X X The universality in the X variable is confirmed. Incorrect large X behavior! Higher derivative of the phase?

  24. 
 
 
 Estimation of universal quantities • Small X behavior: 
 √ f ( X ) = 1 + 2 κ 0 X κ 0 κ 0 = 0 . 61 ± 0 . 01 (FRG) = 0 . 67 ± 0 . 07 • Large X behavior: f ( X ) ≈ ( π / 2) θ ( X ) − 1 / 4 ⇣ ⌘ ξ log ξ µ θ 0 = = 1 . 068 ± 0 . 01 θ 0(FRG) = 1 . 033 ± 0 . 032 π

  25. XY Model Mean field initial condition: " !! # r + Jd + µ β | ϕ | 2 U Λ ( ρ ) = − log 2 J ( Jd + µ ) ϕ π I 0 J ε ( q ) = 2( Jd + µ ) d � ε 0 ( q ) Approximate dispersion: J ε 0 ( q ) + µ ' q 2 dependence recovered µ Optimal choice: µ = 0 Recovers low temperature expansion

  26. Spin stiffness 1 . 00 0 . 75 J s ( T ) 0 . 50 0 . 25 0 . 00 T BKT 0 0 . 5 1 π / 2 T

  27. In conclusion the method shows: • Amplitude fluctuations irrelevant • Non universal corrections • Exact BKT features • “Weak” Universality in 2d Bose gas • Good estimation for XY critical temperature

  28. Future perspectives • Non perturbative SG treatment • Inclusion of lattice dispersion relation • Interplay between amplitude and phase excitations • Application to the BEC-BCS crossover

  29. Thank You

Recommend


More recommend