rixs hxes xfels
play

RIXS-hXES @ XFELs MARTINA DELLANGELA CNR-IOM, TRIESTE Outline - PowerPoint PPT Presentation

RIXS-hXES @ XFELs MARTINA DELLANGELA CNR-IOM, TRIESTE Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II.


  1. RIXS-hXES @ XFELs MARTINA DELL’ANGELA CNR-IOM, TRIESTE

  2. Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II. Instruments III. Selected RIXS-hXES applications @ XFELs I. RIXS @FLASH: Phase Transitions II. RIXS@LCLS: Femtochemistry III. RIXS@LCLS: Liquids IV. RIXS@SACLA: Magnetism V. RIXS@FERMI: dd excitations

  3. I. Exp. Techniques hXES Core level spectroscopies RIXS Photon-in/Photon-out

  4. X-ray absorption spectroscopy (XAS) A photon is absorbed and a core electron is excited to an unoccupied state Empty states Fermi level Valence states 𝑄 𝑗→𝑔 ∝ < 𝑔 𝐼 β€² |𝑗 > | 2 πœ› 𝑔 𝐼 β€² = 𝒒 βˆ™ 𝒇exp(𝑗𝒍𝒔) π‘’π‘—π‘žπ‘π‘šπ‘“ π‘π‘žπ‘žπ‘ π‘π‘¦π‘—π‘›π‘π‘’π‘—π‘π‘œ hv Core level XAS is element-specific

  5. Decay of core holes Empty states Fermi level Valence states Core level Auger Electron Emission

  6. X-ray emission spectroscopy (XES) Empty states Fermi le v el Valence states hv Core level P. Glatzel, bergmann U., Coord. Chem. Rev. 249 (2005) 65

  7. Resonant Inelastic X-ray Scattering (RIXS) Inelastic scattering cross section (Kramers-Heisenberg formula): 2 Empty states 𝐺 πœ•, πœ• 𝑗 = Οƒ 𝑔 Οƒ 𝑛 <𝑔 𝐸 𝑛><𝑛 𝐸 𝑕> πœ€(𝐹 𝑕 + β„πœ• βˆ’ 𝐹 𝑔 βˆ’ β„πœ•β€²) 𝐹 𝑕 +β„πœ• βˆ’πΉ 𝑛 βˆ’π‘—Ξ“ 𝑛 Fermi le v el Valence states i. Site selectivity hv ii. Simmetry selectivity iii. Probe low energy excitations iv. Sub-natural width spectra v. Ultrafast dynamics Core level vi. Bulk and buried structures vii. Band dispersion J. Nordgren et al., in Handbook of Solid State Spectroscopy, Springer 2006, Ed. W.R. Wij

  8. Low energy excitations in materials Core states Ground state L.J.P. Ament, et al., Rev. Mod. Phys., 83, No.2 (2011)

  9. Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II. Instruments III. Selected RIXS-hXES applications @ XFELs I. RIXS@ FLASH: Phase Transitions II. RIXS@LCLS: Femtochemistry III. RIXS@LCLS: Liquids IV. RIXS@SACLA: Magnetism V. RIXS@FERMI: dd excitations

  10. Requirements 1. Photon Detection System (energy resolution) 2. Tunable and brilliant photon source (VUV and X-ray) Monochromatic synchrotron beamlines Photon hungry

  11. X-ray Spectrometers ... history VG Scienta, XES 350 Grace Nordgren, J., Bray, G., Cramm, S., Nyholm, R., Rubensson, J.- E. & Wassdahl, N. (1989). Rev. Sci. Instrum. 60 , 1690 – 1696.

  12. I. Jarrige, BNL https://www.bnl.gov/ps/userguide/lectures/Lecture-8-Jarrige.pdf

  13. RIXS resolution L 3 Cu Edge A. Fohlisch, XFEL hRIXS

  14. Examples of X-ray spectrometers Rowland geometry von Hamos (Dispersive) (Monochromatic; spherical mirror) Hettrick-Underwood (qRIXS, MERLIN(ALS)) M. Czarnota et al., Phys. Rev. A 88, 052505 (2013)

  15. Lab based RIXS/XES ....future developments

  16. RIXS projects @FELs ...(soft X-rays) LCLS qRIXS XFEL Heisenberg RIXS (A. Fohlisch) Yi de Chuang et al. Review of Scientific Instruments 88 , 013110 (2017); https://doi.org/10.1063/1.4974 356 PAL-XFEL, .... https://www.xfel.eu/sites/sites_custom/site_xfel/cont ent/e51499/e60513/e63567/e63600/9_XFUM2017- SASE3_Satellite_Neppl_hRIXS_eng.pdf

  17. Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II. Instruments III. Selected RIXS-hXES applications @ XFELs I. RIXS@FLASH: Phase Transitions II. RIXS@LCLS: Femtochemistry III. RIXS@LCLS: Liquids IV. RIXS@SACLA: Magnetism V. RIXS@FERMI: dd excitations

  18. Tr-XES on Silicon Liquid-liquid transition in silicon Transient β€˜β€™low density β€˜β€™state accessible at short timescales M. Beye et al . , PNAS 107, 16772 (2010)

  19. Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II. Instruments III. Selected RIXS-hXES applications @ XFELs I. RIXS@FLASH: Phase Transitions II. RIXS@LCLS: Femtochemistry III. RIXS@LCLS: Liquids IV. RIXS@SACLA: Magnetism V. RIXS@FERMI: dd excitations

  20. II. RIXS@LCLS: Femtochemistry LCLS (Stanford) SXR Instrument https://lcls.slac.stanford.edu/overview

  21. X-ray Spectrometer T. Katayama, et al. J. Elect. Spec. Rel Phen 187 (2013) 9 Surface Science Endstation (prof. A. Nilsson) Spectrometer (Rowland type): Elliptical grating (Ni coated) Negative Diffraction Order No entrance slit https://lcls.slac.stanford.edu/instruments/sxr/specifications

  22. Femtochemistry Challenge: Understand reaction mechanism and dynamics Potential Energy A + B Without Catalyst With Catalyst Case study: AB Surface AB Reaction coordinate H.-J.Freund, G. Meijer, M. Scheffler, R. Schlogl, M. Wolf, Angew. Chem. Int. Ed. 2011, 50, 10064 – 1009 (and ref therein)

  23. CO RIXS @synchrotron Oxygen Carbon Ruthenium A. Nilsson et al., Chem Phys Lett, 675 (2017) 145 A. FΓΆhlisch et al., J. Chem Phys, 121 (2004) 4848

  24. Tr Tr-RIXS in catalysis Create HOT ELECTRONS that trigger reactions M. Bonn et al, Science 285, 1042 (1999) LCLS set up 60 Hz Scienta R3000 533eV Electron (100 l/mm grating) Spectrometer 100fs 12 J/m 2 50x1800 ΞΌm 2 THERMAL vs ULTRAFAST laser induced heating

  25. FEL vs Synchrotron β€˜β€™static’’ data RIXS MAP FEL Bandwidth CO/Ru(0001) A. Fohlisch et al., J. Chem Phys 121 (2004) 4848 M. Dell’Angela , et al. Science 339, 1302 (2013)

  26. Co desoprtion from Ru(0001) M. Dell’Angela , et al. Science 339, 1302 (2013) Bond Weakening towards gas phase

  27. Are the molecules in the gas phase? Our data Literature FIT = Chemisorbed + Gas Phase Resonant 70% Unpumped + 30 % β€œGas phase” Spectator shifts: 1Ο€ 0.1eV less 4Οƒ 0.3eV less P. Skytt et al, PRA 55 (1997) 134 Participator: -0.5eV and x0.5 Spectator shifts Not really! …PRECURSOR? due to 2Ο€*

  28. Free-energy curve TWO MINIMA! Precursor Chemisorbed DFT+BEEF-vdW Wellendorff L. et al PRB 85, 235149 (2012)

  29. Conclusion II We have been able to measure for the first time molecules in the precursor state upon desorption. Review of FEL femtochemistry experiments:

  30. Ultrafast Surface Chemistry and Catalysis Collaboration Toyli Anniyev (1) Jens Norskov (1) Martin Beye (1,4) (1) SLAC National Accelerator Laboratory, USA; Henrik Oberg (3) Ryan Coffee (1) (2) Institut fΓΌr Experimentalphysik, UniversitΓ€t Hamburg Hirohito Ogasawara (1) Martina Dell'Angela (2) and Center for Free Electron Laser, Hamburg, Germany; Henrik Ostrom (3) Alexander Foehlisch (4) (3) Department of Physics, Stockholm University, Frank Abild-Pedersen (1) Jorgen Gladh (3) Sweden; Lars Pettersson (3) Florian Hieke (2) (4) Methods and Instrumentation in Synchrotron Mats Persson (6) Markus Hantschmann (5) Radiation, Helmholtz-Zentrum Berlin, Berlin, Germany; William F. Schlotter(1) Tetsuo Katayama (1) (5) Department of Physical Chemistry, Fritz-Haber-Institut, Jonas A. Sellberg (1) Sarp Kaya (1) Berlin, Germany. Florian Sorgenfrei (2) Oleg Krupin (1) (6) Surface Science Research Centre, Department of Joshua J. Turner (1) Jerry LaRue (1) Chemistry, University of Liverpool, United Kingdom Hongliang Xin (1) Giuseppe Mercurio (2) Martin Wolf (5) Ankush Mitra (1) Wilfried Wurth (2) Stefan Moeller (1) Andreas Moegelhoej (1) Anders R. Nilsson (1) May Ling Ng (1) Dennis Nordlund (1)

  31. Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II. Instruments III. Selected RIXS-hXES applications @ XFELs I. RIXS@FLASH: Phase Transitions II. RIXS@LCLS: Femtochemistry III. RIXS@LCLS: Liquids IV. RIXS@SACLA: Magnetism V. RIXS@FERMI: dd excitations

  32. III. RIXS@LCLS: Liquids (next lecture by Ph. Wernet)

  33. Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II. Instruments III. Selected RIXS-hXES applications @ XFELs I. Phase Transitions II. RIXS@LCLS: Femtochemistry III. RIXS@LCLS: Liquids IV. RIXS@SACLA: Magnetism V. RIXS@FERMI: dd excitations

  34. Tr-RIXS on Sr 2 IO 4 Strongly correlated system hv = 11.22 keV (L 3 Ir)

  35. Tr-RIXS on Sr 2 IO 4 Magnons or spin waves Bragg peak orbital magnetic

  36. Outline RIXS-hXES@ XFELs I. Techniques 1. X-ray absorption (XAS) 2. X-ray emission (XES) /High resolution X-ray Emission (hXES) 3. Resonant Inelastic X-ray Scattering (RIXS) II. Instruments III. Selected RIXS-hXES applications @ XFELs I. RIXS@FLASH: Phase Transitions II. RIXS@LCLS: Femtochemistry III. RIXS@LCLS: Liquids IV. RIXS@SACLA: Magnetism V. RIXS@FERMI: dd excitations

  37. V. V. RIXS@FERMI: dd dd excitations FERMI (Elettra Sincrotrone Trieste) M 2,3 Edges of Cu, Ni, Co FERMI =

  38. M-edge vs L-edge 50 eV -100 eV 500 eV -1 keV Energy 100 eV/10 meV = 10^4 1 keV/ 10 meV = 10^5 Resolving Power Small machine Larger throughput but Strong elastic peak More branching

Recommend


More recommend