rich dynamics of qubits
play

Rich dynamics of qubits Tams Kiss Wigner Research Center for - PowerPoint PPT Presentation

Rich dynamics of qubits Tams Kiss Wigner Research Center for Physics Collaboration: I. Jex, S. Vym etal, A. Gbris, M. Malachov (Prague) G. Alber, M. Torres, Zs. Bernd (Darmstadt) O. Klmn, A. Gilyn, D. L. Tth April 2020,


  1. Rich dynamics of qubits Tamás Kiss Wigner Research Center for Physics Collaboration: I. Jex, S. Vymˇ etal, A. Gábris, M. Malachov (Prague) G. Alber, M. Torres, Zs. Bernád (Darmstadt) O. Kálmán, A. Gilyén, D. L. Tóth April 2020, Bolyai seminar 1 / 21

  2. Quantum theory: linear or nonlinear? 1., Closed systems - unitary operators - linear evolution 2., Quantum channels - completely positive maps - linear evolution If quantum states evolved nonlinearly ◮ then hard problems (NP complete) would be easily solved (in polynomial time) D. S. Abrams and S. Lloyd, PRL 81, 3992 (1998) ◮ e.g. search using the Gross-Pitaevskii equation D. A. Meyer and T. G. Wong, New J. Phys. 15, 063014 (2013) ◮ quick discrimination of nonorthogonal states - generic feature A. M. Childs and J. Young, Phys. Rev. A, 93, 022314 (2016) 2 / 21

  3. Nonlinear transformations by selective evolution 3., Measurements � projection (von Neumann) � probabilistic (Born) � information gained � information feed-back � post-selection � breaking linearity � 3 / 21

  4. Transformation of a qubit | ψ 1 � | ψ 0 � A A 0 1 U CNOT | ψ 0 � = 1 + | z | 2 ( | 0 � + z | 1 � ) | ψ 0 � | 0 � � B B H. Bechmann-Pasquinucci et al. Phys. Lett. A 242 , 198 (1998). 4 / 21

  5. Transformation of a qubit | ψ 1 � | ψ 0 � A A 0 1 U CNOT | ψ 0 � = 1 + | z | 2 ( | 0 � + z | 1 � ) | ψ 0 � | 0 � � B B H. Bechmann-Pasquinucci et al. Phys. Lett. A 242 , 198 (1998). 1 | 00 � + z | 01 � + z | 10 � + z 2 | 11 � � � Ψ in � � � AB = | ψ 0 � A ⊗ | ψ 0 � B = � 1 + | z | 2 4 / 21

  6. Transformation of a qubit | ψ 1 � | ψ 0 � A A 0 1 U CNOT | ψ 0 � = 1 + | z | 2 ( | 0 � + z | 1 � ) | ψ 0 � | 0 � � B B H. Bechmann-Pasquinucci et al. Phys. Lett. A 242 , 198 (1998). 1 | 00 � + z | 01 � + z | 10 � + z 2 | 11 � � � Ψ in � � � AB = | ψ 0 � A ⊗ | ψ 0 � B = � 1 + | z | 2 1 | 00 � + z | 01 � + z | 11 � + z 2 | 10 � � � Ψ in � � � U CNOT AB = � 1 + | z | 2 4 / 21

  7. Transformation of a qubit | ψ 1 � | ψ 0 � A A 0 1 U CNOT | ψ 0 � = 1 + | z | 2 ( | 0 � + z | 1 � ) | ψ 0 � | 0 � � B B H. Bechmann-Pasquinucci et al. Phys. Lett. A 242 , 198 (1998). 1 | 00 � + z | 01 � + z | 10 � + z 2 | 11 � � � Ψ in � � � AB = | ψ 0 � A ⊗ | ψ 0 � B = � 1 + | z | 2 1 | 00 � + z | 01 � + z | 11 � + z 2 | 10 � � � Ψ in � � � U CNOT AB = � 1 + | z | 2 ◮ after projecting qubit B to | 0 � : 1 | 0 � + z 2 | 1 � � � | ψ 1 � A = � 1 + | z | 2 4 / 21

  8. Transformation of a qubit | ψ 1 � | ψ 0 � A A 0 1 U CNOT | ψ 0 � = 1 + | z | 2 ( | 0 � + z | 1 � ) | ψ 0 � | 0 � � B B H. Bechmann-Pasquinucci et al. Phys. Lett. A 242 , 198 (1998). 1 | 00 � + z | 01 � + z | 10 � + z 2 | 11 � � � Ψ in � � � AB = | ψ 0 � A ⊗ | ψ 0 � B = � 1 + | z | 2 1 | 00 � + z | 01 � + z | 11 � + z 2 | 10 � � Ψ in � � � � U CNOT AB = � 1 + | z | 2 ◮ after projecting qubit B to | 0 � : 1 | 0 � + z 2 | 1 � � � f ( z ) = z 2 | ψ 1 � A = −→ � 1 + | z | 2 4 / 21

  9. Transformation of a qubit 1 | ψ 0 � = 1 + | z | 2 ( | 0 � + z | 1 � ) | ψ 1 � | ψ 0 � A � A 0 U CNOT ↓ | ψ 0 � | 0 � B B 1 | 0 � + z 2 | 1 � � � | ψ 1 � = � 1 + | z | 4 H. Bechmann-Pasquinucci et al. Phys. Lett. A 242 , 198 (1998). 2 Iteration of f ( z ) = z 2 1 (complex plane) Im( z ) ◮ | z | < 1 → 0 (stable fixed point) 0 ◮ | z | > 1 → ∞ (stable fixed point) − 1 ◮ | z | = 1 → no convergence − 2 − 2 − 1 0 1 2 Re( z ) 4 / 21

  10. Transformation of a qubit 1 | ψ 0 � = 1 + | z | 2 ( | 0 � + z | 1 � ) | ψ 1 � | ψ 0 � A � A 0 U CNOT ↓ | ψ 0 � | 0 � B B 1 | 0 � + z 2 | 1 � � � | ψ 1 � = � 1 + | z | 4 H. Bechmann-Pasquinucci et al. Phys. Lett. A 242 , 198 (1998). | 0 � Iteration of f ( z ) = z 2 (Bloch sphere) � | z | < 1 states converge to | 0 � � | z | > 1 states converge to | 1 � � z = 1 weird points: the Julia set | 1 � 4 / 21

  11. Iterative nonlinear quantum protocols ◮ Ensemble of qubits in pure state | ψ 0 � ∼ | 0 � + z | 1 � ( z ∈ C ) 1. Take them pairwise: | Ψ 0 � = | ψ 0 � A ⊗ | ψ 0 � B 2. Apply an entangling two-qubit operation U 3. Measure the state of qubit B — keep A only for result 0 ◮ Smaller ensemble in pure state | ψ 1 � ∼ | 0 � + f ( z ) | 1 � ◮ Quantum magnification bound: exponential downscaling of the ensemble U ↔ f ( z ) = a 0 z 2 + a 1 z + a 2 b 0 z 2 + b 1 z + b 2 A. Gilyén, T. Kiss and I. Jex, Sci. Rep. 6 , 20076 (2016) 5 / 21

  12. Historical remarks on complex dynamics f ◦ n → ? � Iterated rational polynomials: f : ˆ C → ˆ C , � One century of complex chaos: 1871 idea of iterated functions by Ernst Schröder Ueber iterirte Functionen. , Math. Ann. . Fatou: z �→ z 2 / ( z 2 + 2) 1906 first weird example by P 1920ies G. Julia, S. Lattès, & . . . 1970ies Computers help visualize: B. Mandelbrot & . . . � A good book: J.W. Milnor Dynamics in One Complex Variable , (Vieweg, 2000) 6 / 21

  13. Iterative dynamics - examples CNOT gate plus a single qubit gate � sin θ e i ϕ � cos θ U = − sin θ e − i ϕ cos θ Family of maps over ˆ C : z 2 + p p = tan θ e i ϕ z �→ f p ( z ) = 1 − p ∗ z 2 p ∈ C parameter of the gate 7 / 21

  14. Iterative dynamics - Julia sets on the Bloch sphere (a) θ = 0 . 4 , ϕ = π (b) θ = 0 . 55 , ϕ = π (c) θ = 0 . 633 , ϕ = π 2 2 2 (d) θ = 1 . 05 , ϕ = π (f) θ = 0 . 232 , ϕ = 0 (e) θ = 0 . 5 , ϕ = 0 . 5 2 A. Gilyén, T. Kiss and I. Jex, Sci. Rep. 6 , 20076 (2016). 8 / 21

  15. Lattès map: J = ˆ C f ( z ) = z 2 + i iz 2 + 1 , p = i · (1 − i ) · (1 − i ) · (1 − i ) C / Z [ i ] : · · · ℘ ℘ ℘ ℘ Φ Φ Φ Bloch sphere : � � · · · � A commutative diagram: ◮ map on the Bloch sphere ↔ × (1 − i ) n on the torus ◮ all initial states are weird ◮ ergodicity Lattès, S (1918), Les Comptes rendus de l’Académie des sciences, 166: 26-28 A. Gilyén, T. Kiss and I. Jex, Sci. Rep. 6 , 20076 (2016). 9 / 21

  16. Lattès map: ergodic dynamics (a) | z | > 1 (c) | f ◦ 2 ( z ) | > 1 (d) | f ◦ 3 ( z ) | > 1 (b) | f ( z ) | > 1 (h) | f ◦ 7 ( z ) | > 1 (e) | f ◦ 4 ( z ) | > 1 (f) | f ◦ 5 ( z ) | > 1 (g) | f ◦ 6 ( z ) | > 1 (i) | f ◦ 8 ( z ) | > 1 (l) | f ◦ 11 ( z ) | > 1 (j) | f ◦ 9 ( z ) | > 1 (k) | f ◦ 10 ( z ) | > 1 10 / 21

  17. Lattès map with noisy initial states Dynamics represented by R 3 → R 3 functions: u ′ = u 2 − v 2 2 w w ′ = − 2 uv v ′ = 1 + w 2 , 1 + w 2 , 1 + w 2 No book by Milnor! :-( Asymptotics: all mixed initial states → completely mixed state O. Kálmán, T. Kiss and I. Jex, J Russ Laser Res 39: 382 (2018) 11 / 21

  18. CNOT + Hadamard gate: phase transition Noisy (mixed) initial states: ρ ⊙ ρ M −→ ρ ′ = U H Tr ( ρ ⊙ ρ ) U † ρ H where � 1 � � 1 + w � 1 ρ = 1 1 u − iv U H = √ , 1 − 1 u + iv 1 − w 2 2 P = Tr ( ρ 2 ) = (1 + u 2 + v 2 + w 2 ) / 2 ≤ 1 Purity: 12 / 21

  19. Convergence for different purities P 2 2 2 (b) (c) (d) 1 1 1 y P y P y P 0 0 0 − 1 − 1 − 1 − 2 − 2 − 2 − 2 − 1 0 1 2 − 2 − 1 0 1 2 − 2 − 1 0 1 2 x P x P x P P = 1 P = 0 . 87 P = 0 . 75 Light blue: convergence to | 0 � after an even number of steps Dark blue: convergence to | 0 � after an odd number of steps Red: convergence to the completely mixed state 13 / 21

  20. Fractal dimension D bc as a function of purity P 1.7 1.6 1.5 1.4 D bc 1.3 1.2 1.1 1 0.9 0.75 P c 0.8 0.85 0.9 0.95 1 P M. Malachov, I. Jex, O. Kálmán, and T. Kiss, Chaos 29, 033107 (2019) 14 / 21

  21. LOCC scheme with 2 qubits | ψ � | ψ ′ � | ψ � 0 H ? B A ′ A 0 H ? | ψ � = c 1 | 00 � + c 2 | 01 � + c 3 | 10 � + c 4 | 11 � | ψ ′ � = U H ⊗ U H � N ( c 2 1 | 00 � + c 2 2 | 01 � + c 2 3 | 10 � + c 2 � 4 | 11 � ) 15 / 21

  22. 2 qubits: chaotic entanglement Asymptotic states Green: Fully entangled: 1 | ψ ( ∞ ) � = ( | 00 � + | 11 � ) √ 2 Blue: Completely separable, oscillatory: � � | 00 � , 1 | ψ ( ∞ ) � → 2 ( | 0 � + | 1 � ) ⊗ ( | 0 � + | 1 � ) T. Kiss, S. Vymˇ etal, L. D. Tóth, A. Gábris, I. Jex, G. Alber, PRL 107 , 100501 (2011) 16 / 21

  23. An application for state orthogonalization 2 z ◮ nonlinear transformation: f ϕ = 0 = 1 + z 2 J. M. Torres, J. Z. Bernád, G. Alber, O. Kálmán, and T. Kiss, Phys. Rev. A, 95 , 023828 (2017) 17 / 21

  24. An application for state orthogonalization 2 z ◮ nonlinear transformation: f ϕ = 0 = 1 + z 2 2 ◮ two superattractive 1 fixed points: 1 and − 1 Im( z ) 0 ◮ Julia set: imaginary axis − 1 − 2 − 0 . 2 − 0 . 1 0 0 . 1 0 . 2 Re( z ) J. M. Torres, J. Z. Bernád, G. Alber, O. Kálmán, and T. Kiss, Phys. Rev. A, 95 , 023828 (2017) 17 / 21

  25. An application for state orthogonalization 2 z ◮ nonlinear transformation: f ϕ = 0 = 1 + z 2 ◮ Julia set: longitudinal | 0 �−| 1 � √ great circle through y axis 2 ◮ equally separates | 0 � + | 1 � regions of convergence √ 2 J. M. Torres, J. Z. Bernád, G. Alber, O. Kálmán, and T. Kiss, Phys. Rev. A, 95 , 023828 (2017) 17 / 21

Recommend


More recommend