representation theorems and the semantics of semi lattice
play

Representation theorems and the semantics of (semi)lattice based - PowerPoint PPT Presentation

Representation theorems and the semantics of (semi)lattice based logics Viorica Sofronie-Stokkermans Max-Planck-Institut f ur Informatik Saarbr ucken Germany Overview Motivation Connection between different classes of models


  1. Examples • positive logics [Dunn 1995] • (modal) intuitionistic logic DLO • G¨ odel logics [G¨ odel 1930] • SH n , SHK n logics [Iturrioz 1982] • Post logics and generalizations HAO • modal logic, dynamic logic, ... BAO

  2. Examples • positive logics [Dunn 1995] • (modal) intuitionistic logic DLO • G¨ odel logics [G¨ odel 1930] • SH n , SHK n logics [Iturrioz 1982] RDO • Post logics and generalizations HAO • modal logic, dynamic logic, ... • relevant logic RL [Urquhart’96] BAO • fuzzy logics G¨ odel, � Lukasiewicz, product

  3. Examples • positive logics [Dunn 1995] SLO LO • (modal) intuitionistic logic DLO • G¨ odel logics [G¨ odel 1930] • SH n , SHK n logics [Iturrioz 1982] RDO • Post logics and generalizations HAO • modal logic, dynamic logic, ... • relevant logic RL [Urquhart’96] BAO • fuzzy logics G¨ odel, � Lukasiewicz, product • BCC and related logics • Lambek calculus; linear logic ...

  4. � � Motivation. Semantics f Algebraic models � A ( A, D ) Var � � � � � � � f � � Fma ( Var )

  5. � � Motivation. Semantics f Algebraic models � A ( A, D ) Var � � � � � � � f � � Fma ( Var ) Kripke-style models m : Var → P ( X ) ( W, { R W } R ∈ Rel ) meaning function

  6. � � Motivation. Semantics f Algebraic models � A ( A, D ) Var � � � � � � � f � � Fma ( Var ) Kripke-style models m : Var → P ( X ) ( W, { R W } R ∈ Rel ) meaning function Relational models algebras of relations

  7. Motivation. Decidability results Logical calculi ◦ Gentzen-style calculi ◦ natural deduction ◦ hypersequent calculi [Avron 1991]

  8. Motivation. Decidability results Logical calculi ◦ Gentzen-style calculi ◦ natural deduction ◦ hypersequent calculi [Avron 1991] Semantics ◦ Algebraic semantics ◦ Kripke-style semantics ◦ Relational semantics

  9. Motivation. Decidability results Logical calculi ◦ Gentzen-style calculi ◦ natural deduction ◦ hypersequent calculi [Avron 1991] Semantics ◦ Algebraic semantics ◦ Kripke-style semantics ◦ Relational semantics

  10. Motivation. Decidability results Logical calculi ◦ Gentzen-style calculi ◦ natural deduction ◦ hypersequent calculi [Avron 1991] Semantics ◦ Algebraic semantics ◦ Kripke-style semantics ◦ Relational semantics Automated theorem proving ◦ embedding into FOL + resolution ◦ tableau methods ◦ natural deduction; labelled deductive systems

  11. Motivation. Decidability results Logical calculi ◦ Gentzen-style calculi ◦ natural deduction ◦ hypersequent calculi [Avron 1991] Semantics ◦ Algebraic semantics ◦ Kripke-style semantics ◦ Relational semantics Automated theorem proving ◦ embedding into FOL + resolution ◦ tableau methods ◦ natural deduction; labelled deductive systems

  12. Connections between classes of models Algebraic models � � ������������������� � � � � � � � � � � � � � � � � � � Kripke models Relational models

  13. Connections between classes of models Algebraic models � � ������������������� � � � � representation theorems � � � � � � (algebras of sets) � � � � � � � � Kripke models Relational models

  14. Connections between classes of models Algebraic models � � ������������������� � � � � representation theorems � representation theorems � � � � � (algebras of sets) � (algebras of relations) � � � � � � � Kripke models Relational models

  15. Connections between classes of models Algebraic models � � ������������������� � � � � representation theorems � representation theorems � � � � � (algebras of sets) � (algebras of relations) � � � � � � � Kripke models Relational models

  16. Algebraic and Kripke-style semantics Algebraic models Kripke-style models

  17. � � Algebraic and Kripke-style semantics Algebraic models Kripke-style models D (C) A R E (i) E ( K ) ⊆ P ( K ) algebra of subsets of K (ii) i : A → E ( D ( A )) injective homomorphism

  18. � � Algebraic and Kripke-style semantics Algebraic models Kripke-style models D (C) A R E (i) E ( K ) ⊆ P ( K ) algebra of subsets of K (ii) i : A → E ( D ( A )) injective homomorphism Kripke-style models

  19. � � Algebraic and Kripke-style semantics Algebraic models Kripke-style models D (C) A R E (i) E ( K ) ⊆ P ( K ) algebra of subsets of K (ii) i : A → E ( D ( A )) injective homomorphism ( K, m ) K ∈ R ; m : Var → E ( K ) ⊆ P ( K ) Kripke-style models

  20. � � Algebraic and Kripke-style semantics Algebraic models Kripke-style models D (C) A R E (i) E ( K ) ⊆ P ( K ) algebra of subsets of K (ii) i : A → E ( D ( A )) injective homomorphism ( K, m ) K ∈ R ; m : Var → E ( K ) ⊆ P ( K ) Kripke-style models r ( K, m ) | = x φ iff x ∈ m ( φ )

  21. � � Algebraic and Kripke-style semantics Algebraic models Kripke-style models D (C) A R E (i) E ( K ) ⊆ P ( K ) algebra of subsets of K (ii) i : A → E ( D ( A )) injective homomorphism ( K, m ) K ∈ R ; m : Var → E ( K ) ⊆ P ( K ) Kripke-style models r ( K, m ) | = x φ iff x ∈ m ( φ ) r a | = φ iff E ( K ) | = φ = 1. K

  22. � � Algebraic and Kripke-style semantics Algebraic models Kripke-style models D (C) A R E (i) E ( K ) ⊆ P ( K ) algebra of subsets of K (ii) i : A → E ( D ( A )) injective homomorphism ( K, m ) K ∈ R ; m : Var → E ( K ) ⊆ P ( K ) Kripke-style models r | = a r Theorem If A , R satisfy (C)(i,ii) then A | = φ iff R | = φ .

  23. � � Algebraic and relational semantics Algebraic models Relational models D (C) A R E (i) E ( K ) algebra of relations (ii) i : A → E ( D ( A )) injective homomorphism K ∈ R ; f : Var → E ( K ) ( K, f ) Relational models a = | a a Theorem If A , R satisfy (C)(i,ii) then = φ iff R = φ . A | |

  24. Representation theorems Stone 1940: Bool Priestley 1972: D 01 B ∼ L ∼ → Clopen ( F m ( B ) , τ ) → ClopenOF ( F p ( L ) , ⊆ , τ ) η B ( x ) = { F ∈ F m ( L ) | x ∈ F } η L ( x ) = { F ∈ F p ( L ) | x ∈ F }

  25. Representation theorems Natural Dualities: V = ISP ( P ) A ∼ → Hom Rel ( D ( A ) , P ) P ’alter-ego’ of P D ( A ) = Hom V ( A, P ) Stone 1940: Bool Priestley 1972: D 01 B ∼ L ∼ → Clopen ( F m ( B ) , τ ) → ClopenOF ( F p ( L ) , ⊆ , τ ) η B ( x ) = { F ∈ F m ( L ) | x ∈ F } η L ( x ) = { F ∈ F p ( L ) | x ∈ F }

  26. Representation theorems Natural Dualities: V = ISP ( P ) A ∼ → Hom Rel ( D ( A ) , P ) P ’alter-ego’ of P D ( A ) = Hom V ( A, P ) Stone 1940: Bool = ISP ( B 2 ) Priestley 1972: D 01 B ∼ L ∼ → Hom St ( D ( B ) , B 2 ) → ClopenOF ( F p ( L ) , ⊆ , τ ) η B ( x )( h ) = h ( x ) η L ( x ) = { F ∈ F p ( L ) | x ∈ F }

  27. Representation theorems Natural Dualities: V = ISP ( P ) A ∼ → Hom Rel ( D ( A ) , P ) P ’alter-ego’ of P D ( A ) = Hom V ( A, P ) Stone 1940: Bool = ISP ( B 2 ) Priestley 1972: D 01 = ISP ( L 2 ) B ∼ L ∼ → Hom St ( D ( B ) , B 2 ) → Hom Pr ( D ( L ) , L 2 ) η B ( x )( h ) = h ( x ) η L ( x )( h ) = h ( x )

  28. � � Representation theorems Natural Dualities: V = ISP ( P ) A ∼ → Hom Rel ( D ( A ) , P ) P ’alter-ego’ of P D ( A ) = Hom V ( A, P ) � � �������������������� � � � � � � � � � � � � � � � � � � � Stone 1940: Bool = ISP ( B 2 ) Priestley 1972: D 01 = ISP ( L 2 ) B ∼ L ∼ → Hom St ( D ( B ) , B 2 ) → Hom Pr ( D ( L ) , L 2 ) η B ( x )( h ) = h ( x ) η L ( x )( h ) = h ( x ) Semilattices: SL = ISP ( S 2 ) S ∼ → Hom ts ( D ( S ) , S 2 ) η S ( x )( h ) = h ( x )

  29. � � Representation theorems Natural Dualities: V = ISP ( P ) A ∼ → Hom Rel ( D ( A ) , P ) P ’alter-ego’ of P D ( A ) = Hom V ( A, P ) � � �������������������� � � � � � � � � � � � � � � � � � � � Stone 1940: Bool = ISP ( B 2 ) Priestley 1972: D 01 = ISP ( L 2 ) → OF ( D ( L )) → P ( D ( B )) L ֒ B ֒ η L ( x ) = { F ∈ D ( L ) | x ∈ F } η B ( x ) = { F ∈ D ( B ) | x ∈ F } Semilattices: SL = ISP ( S 2 ) ( S, ∧ ) ֒ → ( SF ( D ( S )) , ∩ ) η S ( x ) = { F ∈ D ( S ) | x ∈ F } Lattices: η L : ( L, ∧ , ∨ ) ֒ → ( SF ( D ( L )) , ∩ , ∨ ) η L ( x ) := { F ∈ D ( L ) | x ∈ F }

  30. Example 1. Boolean algebras

  31. Example 2. Distributive lattices

  32. Example 3. Semilattices

  33. Example 4. Lattices

  34. Other representation theorems Boolean algebras with operators • J´ onsson and Tarski (1951)

  35. Other representation theorems Boolean algebras with operators • J´ onsson and Tarski (1951) Distributive lattices with operators • Goldblatt (1986), VS (2000)

  36. Other representation theorems Boolean algebras with operators • J´ onsson and Tarski (1951) Distributive lattices with operators • Goldblatt (1986), VS (2000) Lattices (with operators) • Urquhart (1978) • Allwein and Dunn (1993) • Dunn and Hartonas (1997) • Hartonas (1997)

  37. Other representation theorems Boolean algebras with operators General Idea: • A �→ D ( A ) topological space • J´ onsson and Tarski (1951) with additional structure Distributive lattices with operators • Goldblatt (1986), VS (2000) • A ∼ = ClosedSubsets of D ( A ) Lattices (with operators) • Urquhart (1978) closed wrt: topological structure order structure • Allwein and Dunn (1993) ... • Dunn and Hartonas (1997) • operators �→ relations on D ( A ) • Hartonas (1997)

  38. Other representation theorems Boolean algebras with operators General Idea: • A �→ D ( A ) topological space • J´ onsson and Tarski (1951) with additional structure Distributive lattices with operators • Goldblatt (1986), VS (2000) • A ∼ = ClosedSubsets of D ( A ) Lattices (with operators) • Urquhart (1978) closed wrt: topological structure order structure • Allwein and Dunn (1993) ... • Dunn and Hartonas (1997) • operators �→ relations on D ( A ) • Hartonas (1997) “Gaggles”, “tonoids” Dunn (1990, 1993)

  39. Representation theorems f A : A ε 1 × · · · × A εn → A ε join-hemimorphism f ∈ Σ ε 1 ...εn → ε :

  40. � � Representation theorems f A : A ε 1 × · · · × A εn → A ε join-hemimorphism f ∈ Σ ε 1 ...εn → ε : D D � Rp Σ � SLSp Σ DLO Σ SLO Σ E E R f ( F 1 , . . . , F n , F ) iff f ( F ε 1 1 , . . . , F εn n ) ⊆ F ε D ( A ) ( R − 1 ( U ε 1 1 , . . . , U εn n )) ε E ( X ) f R ( U 1 , . . . , U n ) =

  41. � � Representation theorems f A : A ε 1 × · · · × A εn → A ε join-hemimorphism f ∈ Σ ε 1 ...εn → ε : D D � Rp Σ � SLSp Σ DLO Σ SLO Σ E E R f ( F 1 , . . . , F n , F ) iff f ( F ε 1 1 , . . . , F εn n ) ⊆ F ε D ( A ) ( R − 1 ( U ε 1 1 , . . . , U εn n )) ε E ( X ) f R ( U 1 , . . . , U n ) = Example x ◦ y ≤ z iff x ≤ y → z has type + 1 , +1 → + 1 R ◦ ( F 1 , F 2 , F 3 ) iff F 1 ◦ F 2 ⊆ F 3 ◦ R → ( F 1 , F 2 , F 3 ) iff F 1 → F c 2 ⊆ F c → has type + 1 , − 1 → − 1 3

  42. � � Representation theorems f A : A ε 1 × · · · × A εn → A ε join-hemimorphism f ∈ Σ ε 1 ...εn → ε : D D � Rp Σ � SLSp Σ DLO Σ SLO Σ E E R f ( F 1 , . . . , F n , F ) iff f ( F ε 1 1 , . . . , F εn n ) ⊆ F ε D ( A ) ( R − 1 ( U ε 1 1 , . . . , U εn n )) ε E ( X ) f R ( U 1 , . . . , U n ) = Example x ◦ y ≤ z iff x ≤ y → z has type + 1 , +1 → + 1 R ◦ ( F 1 , F 2 , F 3 ) iff F 1 ◦ F 2 ⊆ F 3 ◦ R → ( F 1 , F 2 , F 3 ) iff F 1 → F c 2 ⊆ F c → has type + 1 , − 1 → − 1 3 R → ( F 1 , F 2 , F 3 ) iff R ◦ ( F 3 , F 1 , F 2 )

  43. � � Algebraic and Kripke-style semantics D SLO (C) A R LO E DLO (i) E ( K ) ⊆ P ( K ) algebra of subsets of K RDO (ii) i : A ֒ → E ( D ( A )) HAO BAO

  44. � � Algebraic and Kripke-style semantics D SLO (C) A R LO E DLO (i) E ( K ) ⊆ P ( K ) algebra of subsets of K RDO (ii) i : A ֒ → E ( D ( A )) HAO ( K, m ), m : Var → E ( K ) r ( K, m ) | = x φ iff x ∈ m ( φ ) BAO

  45. � � Algebraic and Kripke-style semantics D SLO (C) A R LO E (i) E ( K ) ⊆ P ( K ) DLO algebra of subsets of K RDO (ii) i : A ֒ → E ( D ( A )) ( K, m ), m : Var → E ( K ) HAO r ( K, m ) | = x φ iff x ∈ m ( φ ) BAO DLO Priestley representation η A : A → OF ( D ( A )) SLO , LO Representation for (semi)lattices η A : A → SF ( D ( A ))

  46. Logic Algebraic Kripke-style meaning functions models models DLO Σ Rp Σ m : Var → OF ( X ) Positive ( L, ∨ , ∧ , 0 , 1 , { f } f ∈ Σ ) ( X, ≤ , { R } R ∈ Σ ) HAO Σ Rp Σ m : Var → OF ( X ) Post-style ( L, ∨ , ∧ , ⇒ , 0 , 1 , { f } f ∈ Σ )( X, ≤ , { R } R ∈ Σ ) BAO Σ BAO Σ m : Var → P ( X ) ( B, ∨ , ∧ , 0 , 1 , ¬ , { f } f ∈ Σ ) ( X, { R } R ∈ Σ ) RDO RSp m : Var → OF ( X ) Lukasiewicz � -style ( L, ∨ , ∧ , 0 , 1 , ◦ , → ) ( X, ≤ , R ◦ ) RSO , RLO RSO , RLO m : Var → SF ( X ) ( S, ∧ , 0 , 1 , ◦ , → ) ( X, ∧ , R ◦ ) ( S, ∨ , ∧ , 0 , 1 , ◦ , → ) ( X, ∧ , R ◦ )

  47. Overview • Motivation • Connection between different classes of models • Representation theorems • Examples • Decidability results • Automated theorem proving • Conclusions

  48. Class u.w.p. References Lattices PTIME Skolem (1920), Burris (1995) decidable Blok, Van Alten (1999) ResLatMon decidable Blok, Van Alten (1999) ResLatIntMon decidable Blok, Van Alten (1999) BCK → Modular Lattices undecidable Freese (1980), Herrmann (1983) co-NP complete Bloniarz et al.(1987) D 01 DLO Σ , RDO Σ EXPTIME VS (1999, 2001) decidable Andreka DLSgr ∨ , d subclasses undecidable Urquhart (1995) Heyting Algebras DEXP VS (1999) undecidable Kurucz, Nemeti et al. (1993) HASgr ∨ , d Boolean Algebras co-NP complete Cook (1971) undecidable Kurucz, Nemeti et al. (1993) ResBoolMon undecidable Kurucz, Nemeti et al. (1993) BoolSgr ∨ , d decidable Gyuris (1992) BoolSgr ∨

  49. Decidability results Semantics • Algebraic semantics finite model property (uniform) word problem decidable

  50. Decidability results Semantics • Algebraic semantics finite model property (uniform) word problem decidable • Kripke-style semantics finite model property embedding into decidable fragments of FOL devise sound and complete decision procedure

  51. Decidability results Semantics • Algebraic semantics finite model property (uniform) word problem decidable • Kripke-style semantics finite model property embedding into decidable fragments of FOL devise sound and complete decision procedure • Relational semantics relational proof systems

  52. Decidability results Semantics • Algebraic semantics finite model property (uniform) word problem decidable • Kripke-style semantics finite model property embedding into decidable fragments of FOL devise sound and complete decision procedure • Relational semantics relational proof systems Automated theorem proving ◦ embedding into FOL + ATP in first-order logic ◦ tableau methods ◦ natural deduction; labelled deductive systems

  53. Decidability results Semantics • Algebraic semantics finite model property (uniform) word problem decidable • Kripke-style semantics finite model property embedding into decidable fragments of FOL devise sound and complete decision procedure • Relational semantics relational proof systems Automated theorem proving ◦ embedding into FOL + ATP in first-order logic ◦ tableau methods ◦ natural deduction; labelled deductive systems

  54. Decidability results Semantics • Algebraic semantics finite model property (uniform) word problem decidable • Kripke-style semantics finite model property embedding into decidable fragments of FOL devise sound and complete decision procedure • Relational semantics relational proof systems Automated theorem proving ◦ embedding into FOL + ATP in first-order logic ◦ tableau methods ◦ natural deduction; labelled deductive systems

  55. Class u.w.p. References Lattices PTIME Skolem (1920), Burris (1995) decidable Blok, Van Alten (1999) ResLatMon decidable Blok, Van Alten (1999) ResLatIntMon decidable Blok, Van Alten (1999) BCK → Modular Lattices undecidable Freese (1980), Herrmann (1983) co-NP complete Bloniarz et al.(1987) D 01 DLO Σ , RDO Σ EXPTIME VS (1999, 2001) decidable Andreka DLSgr ∨ , d subclasses undecidable Urquhart (1995) Heyting Algebras DEXP VS (1999) undecidable Kurucz, Nemeti et al. (1993) HASgr ∨ , d Boolean Algebras co-NP complete Cook (1971) undecidable Kurucz, Nemeti et al. (1993) ResBoolMon undecidable Kurucz, Nemeti et al. (1993) BoolSgr ∨ , d decidable Gyuris (1992) BoolSgr ∨

  56. Class u.w.p. References Lattices PTIME Skolem (1920), Burris (1995) decidable Blok, Van Alten (1999) ResLatMon decidable Blok, Van Alten (1999) ResLatIntMon decidable Blok, Van Alten (1999) BCK → Modular Lattices undecidable Freese (1980), Herrmann (1983) co-NP complete Bloniarz et al.(1987) D 01 DLO Σ , RDO Σ EXPTIME VS (1999, 2001) decidable Andreka DLSgr ∨ , d subclasses undecidable Urquhart (1995) Heyting Algebras DEXP VS (1999) undecidable Kurucz, Nemeti et al. (1993) HASgr ∨ , d Boolean Algebras co-NP complete Cook (1971) undecidable Kurucz, Nemeti et al. (1993) ResBoolMon undecidable Kurucz, Nemeti et al. (1993) BoolSgr ∨ , d decidable Gyuris (1992) BoolSgr ∨

  57. Resolution-based methods Advantages

  58. Resolution-based methods Advantages • direct encoding • restricted (hence efficient) calculi – ordering, selection – simplification/elimination of redundancies • allow use of efficient implementations (SPASS, Saturate) • in many cases better than equational reasoning AC operators �→ logical operations

  59. Automated Theorem Proving: DLO Σ Theorem DLO Σ | = φ 1 ≤ φ 2 iff the following conjunction is unsatisfiable: (Dom) x ≤ x ; x ≤ y, y ≤ z → x ≤ z R f ( x 1 , . . . , x n , x ) , x ⊲ ⊳ ǫ y ⇒ R f ( x 1 , . . . , x n , y ) if f ∈ Σ ε → ε (Her) x ≤ y, P e ( x ) ⇒ P e ( y ) (Ren)(0 , 1) ¬ P 0 ( x ) P 1 ( x ) ( ∧ ) P e 1 ∧ e 2 ( x ) ⇔ P e 1 ( x ) ∧ P e 2 ( x ) ( ∨ ) P e 1 ∨ e 2 ( x ) ⇔ P e 1 ( x ) ∨ P e 2 ( x ) (Σ) P f ( e 1 ,...,en ) ( x ) ⇔ ( ∃ x 1 , . . . ∃ x n f ∈ Σ ε 1 ...εn → ε ( P e 1 ( x 1 ) ε 1 ∧ · · · ∧ P en ( x n ) εn ∧ R f ( x 1 , . . . , x n , x ))) ε (N) ∃ c ∈ X : P φ 1 ( c ) ∧ ¬ P φ 2 ( c )

  60. Automated Theorem Proving: DLO Σ Theorem DLO Σ | = φ 1 ≤ φ 2 iff the following conjunction is unsatisfiable: (Dom) (Her) (Ren)(0 , 1) ¬ P 0 ( x ) P 1 ( x ) ( ∧ ) P e 1 ∧ e 2 ( x ) ⇔ P e 1 ( x ) ∧ P e 2 ( x ) ( ∨ ) P e 1 ∨ e 2 ( x ) ⇔ P e 1 ( x ) ∨ P e 2 ( x ) (Σ) P f ( e 1 ,...,en ) ( x ) ⇔ ( ∃ x 1 , . . . ∃ x n f ∈ Σ ε 1 ...εn → ε ( P e 1 ( x 1 ) ε 1 ∧ · · · ∧ P en ( x n ) εn ∧ R f ( x 1 , . . . , x n , x ))) ε (N) ∃ c ∈ X : P φ 1 ( c ) ∧ ¬ P φ 2 ( c )

  61. Automated Theorem Proving: HAO Σ Theorem HAO Σ | = φ = 1 iff the following conjunction is unsatisfiable: (Dom) x ≤ x ; x ≤ y, y ≤ z → x ≤ z R f ( x 1 , . . . , x n , x ) , x ⊲ ⊳ ǫ y ⇒ R f ( x 1 , . . . , x n , y ) if f ∈ Σ ε → ε (Her) x ≤ y, P e ( x ) ⇒ P e ( y ) (Ren)(0 , 1) ¬ P 0 ( x ) P 1 ( x ) ( ∧ ) P e 1 ∧ e 2 ( x ) ⇔ P e 1 ( x ) ∧ P e 2 ( x ) ( ∨ ) P e 1 ∨ e 2 ( x ) ⇔ P e 1 ( x ) ∨ P e 2 ( x ) (Σ) P f ( e 1 ,...,en ) ( x ) ⇔ ( ∃ x 1 , . . . ∃ x n f ∈ Σ ε 1 ...εn → ε ( P e 1 ( x 1 ) ε 1 ∧ · · · ∧ P en ( x n ) εn ∧ R f ( x 1 , . . . , x n , x ))) ε ( → ) P e 1 → e 2 ( x ) ⇔ ∀ y ( y ≥ x ∧ P e 1 ( y ) ⇒ P e 2 ( y )) (N) ∃ c ∈ X : ¬ P φ ( c )

  62. Automated Theorem Proving Class of algebras Complexity (refinements of resolution) DLO Σ EXPTIME RDO Σ EXPTIME BAO Σ EXPTIME HA DEXPTIME HAO Σ ? RSO Σ , RLO Σ ?

  63. Overview • Representation theorems • Connection between different classes of models • Examples • Decidability results • Automated theorem proving

  64. Overview • Representation theorems • Connection between different classes of models • Examples • Decidability results • Automated theorem proving

  65. Overview • Representation theorems • Connection between different classes of models • Examples • Decidability results • Automated theorem proving

  66. Overview • Representation theorems • Connection between different classes of models • Examples • Decidability results • Automated theorem proving

  67. Overview • Representation theorems • Connection between different classes of models • Examples • Decidability results • Automated theorem proving

Recommend


More recommend