regularizing with bregman moreau envelopes
play

Regularizing with BregmanMoreau envelopes Heinz H. Bauschke Minh N. - PowerPoint PPT Presentation

Moreau Envelopes Bregman Distance Bregman Envelopes Conclusion Regularizing with BregmanMoreau envelopes Heinz H. Bauschke Minh N. Dao Scott B Lindstrom COCANA CARMA CARMA University of British University of Newcastle University of


  1. Moreau Envelopes Bregman Distance Bregman Envelopes Conclusion Regularizing with Bregman–Moreau envelopes Heinz H. Bauschke Minh N. Dao Scott B Lindstrom COCANA CARMA CARMA University of British University of Newcastle University of Newcastle Columbia daonminh@gmail.com scott.lindstrom@uon.edu.au heinz.bauschke@ubc.ca AMSI Optimise 2017 Revised July 4, 2017 1 / 39

  2. Moreau Envelopes Bregman Distance Bregman Envelopes Conclusion Outline I 1 Moreau Envelopes Introduction 3 Bregman Envelopes Epigraph Intuition Introduction Classical Results Results Prox Operators Envelopes 2 Bregman Distance Prox Operators Definition 4 Conclusion Our assumptions on f Summary Three demo functions References What Changes? 2 / 39

  3. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Definition 1 (Moreau envelope) Moreau envelope with parameter γ ∈ R ++ y ∈ X θ ( y ) + 1 env γ 2 γ � x − y � 2 . θ : x �→ inf (1) A special case of infimal convolution: θ � f : R n → [ −∞ , ∞ ] : x �→ inf y ∈ R n ( θ ( y ) + f ( x − y )) ( “exact” if θ � f ( x ) = min y ∈ R n ( θ ( y ) + f ( x − y )) ∀ x ∈ dom θ � f Moreau only considered γ = 1 Systematic study involving γ originated with Attouch [2][3] 3 / 39

  4. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Epigraph Intuition Think: smoothing through epigraph addition epi( θ � f ) = epi θ + epi f 1 is always true when θ � f is exact. 1Minkowski sum 4 / 39

  5. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Limiting case As γ → 0 we recover θ 5 / 39

  6. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Limiting Case As γ → ∞ we recover min θ 6 / 39

  7. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Varying the Parameter Varying the parameter 7 / 39

  8. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Prox Operators Throughout: θ is a lower semicontinuous convex function of Legendre type Definition 2 (Prox Operator) Prox γθ ( x ) is the unique point satisfying � θ ( y ) + 1 � 2 γ � x − y � 2 env γθ ( x ) = min y ∈ R n = θ (Prox γθ ( x )) + 1 2 γ � x − Prox γθ ( x ) � 2 8 / 39

  9. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Prox Operators: Geometric Intuition Figure: Where θ = | y + x − 1 | and Figure: The net Prox γθ (1 , 2) where γ = 1 / 2 γ ∈ ]0 , ∞ [ 9 / 39

  10. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Prox Operators: Limiting Cases Figure: lim γ →∞ Prox γθ ( x ) = P argmin θ ( x ) 10 / 39

  11. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Prox Operators: Limiting Cases Figure: lim γ → 0 Prox γθ ( x ) = x 11 / 39

  12. Moreau Envelopes Introduction Bregman Distance Epigraph Intuition Bregman Envelopes Classical Results Conclusion Prox Operators Special case: projection Remark 1 (Special case: projection) When θ = ι C is the indicator of C Prox γθ ( x ) = P C ( x ) is the projection operator. 12 / 39

  13. Moreau Envelopes Definition Bregman Distance Our assumptions on f Bregman Envelopes Three demo functions Conclusion What Changes? Bregman Distance Definition 3 (Bregman Distance) The Bregman Distance of a function f between two points x , y is D f ( x , y ) = f ( x ) − f ( y ) − �∇ f ( y ) , x − y � y 0 x f ( x ) D f ( x , y ) �∇ f ( y ) , x − y � f ( y ) Figure: Bregman distance where the function f is the Boltzmann-Shannon Entropy x �→ x log( x ) − x 13 / 39

  14. Moreau Envelopes Definition Bregman Distance Our assumptions on f Bregman Envelopes Three demo functions Conclusion What Changes? Our assumptions on f We assume: 1 f is a lower semicontinuous convex function of Legendre type and U := int dom f . 2 ∇ 2 f exists and is continuous on U ; 3 D f is jointly convex , i.e., convex on X × X ; 4 ( ∀ x ∈ U ) D f ( x , · ) is strictly convex on U ; 5 ( ∀ x ∈ U ) D f ( x , · ) is coercive, i.e., D f ( x , y ) → + ∞ as � y � → + ∞ . 14 / 39

  15. Moreau Envelopes Definition Bregman Distance Our assumptions on f Bregman Envelopes Three demo functions Conclusion What Changes? Our demo functions Where x , y ∈ R J : Energy: If f : x �→ 1 2 � x � 2 , then 1 D f ( x , y ) = 1 2 � x − y � 2 J Boltzmann–Shannon 2 entropy: If f : x �→ � x j ln( x j ) − x j , then one obtains the 2 j =1 Kullback–Leibler divergence �� J j =1 x j ln( x j / y j ) − x j + y j , if x ≥ 0 and y > 0; D f ( x , y ) = + ∞ , otherwise. J � Fermi–Dirac entropy: If f : x �→ x j ln( x j ) + (1 − x j ) ln(1 − x j ), then 3 j =1 �� J j =1 x j ln( x j / y j ) + (1 − x j ) log � (1 − x j ) / (1 − y j ) � , if 0 ≤ x ≤ 1 and 0 < y < 1; D f ( x , y ) = + ∞ , otherwise. 2With Boltzmann–Shannon entropy and Fermi–Dirac entropy, we use convention 0 · ln(0) := 0. 15 / 39

  16. Moreau Envelopes Definition Bregman Distance Our assumptions on f Bregman Envelopes Three demo functions Conclusion What Changes? What Changes? We lose triangle Inequality. y 0 z x f ( x ) D f ( x , z ) D f ( x , y ) f ( z ) D f ( z , y ) f ( y ) Figure: Where f is the Boltzmann-Shannon Entropy, D f ( x , y ) > D f ( z , y ) + D f ( x , z ). 16 / 39

  17. Moreau Envelopes Definition Bregman Distance Our assumptions on f Bregman Envelopes Three demo functions Conclusion What Changes? What Changes? We also lose symmetry... and translation invariance. 17 / 39

  18. Moreau Envelopes Definition Bregman Distance Our assumptions on f Bregman Envelopes Three demo functions Conclusion What Changes? What Changes? Except when using the energy, of course. 18 / 39

  19. Moreau Envelopes Introduction Bregman Distance Results Bregman Envelopes Envelopes Conclusion Prox Operators Bregman Envelopes Definition 4 For a given θ, f where int dom f ∩ dom θ � = ∅ : The left Bregman envelope is x ∈ X θ ( x ) + 1 ← − env γ θ : X → [ −∞ , + ∞ ] : y �→ inf γ D f ( x , y ) (2) The right Bregman envelope is y ∈ X θ ( y ) + 1 − → env γ θ : X → [ −∞ , + ∞ ] : x �→ inf γ D f ( x , y ) , (3) If f = 1 2 � · � 2 , then D f : ( x , y ) �→ 1 2 � x − y � 2 , and ← − θ = − → env γ env γ θ = θ � ( 1 2 γ � · � 2 ) is the classical Moreau envelope of θ of parameter γ . 19 / 39

  20. Moreau Envelopes Introduction Bregman Distance Results Bregman Envelopes Envelopes Conclusion Prox Operators Bregman Envelopes Consider the following properties: (a) U ∩ dom θ is bounded. (b) inf θ ( U ) > −∞ . (c) f is supercoercive, i.e., f ( x ) / � x � → + ∞ as � x � → + ∞ . (d) ( ∀ x ∈ U ) D f ( x , · ) is supercoercive. Then the following hold (and we suppose them moving forward): If any of (a), (b), or (c) holds, then θ ( · ) + 1 ( ∀ y ∈ U ) γ D f ( · , y ) is coercive If any of (a), (b), or (d) holds, then θ ( · ) + 1 ( ∀ x ∈ U ) γ D f ( x , · ) is coercive. 20 / 39

  21. Moreau Envelopes Introduction Bregman Distance Results Bregman Envelopes Envelopes Conclusion Prox Operators Bregman Proximity Operators Definition 5 (Bregman Proximity Operators) For a given θ, f where int dom f ∩ dom θ � = ∅ : 1 The left prox operator is ← − θ ( x ) + 1 P θ : int dom f → int dom f : y �→ argmin γ D f ( x , y ) . x ∈ X 2 The right prox operator is − → θ ( y ) + 1 P θ : int dom f → int dom f : x �→ argmin γ D f ( x , y ) . y ∈ X 21 / 39

  22. Moreau Envelopes Introduction Bregman Distance Results Bregman Envelopes Envelopes Conclusion Prox Operators Epigraphs Shown: left envelope with Boltzman- Shannon entropy Still regularizes Addition changes 22 / 39

  23. Moreau Envelopes Introduction Bregman Distance Results Bregman Envelopes Envelopes Conclusion Prox Operators Epigraphs Shown: right envelope with Boltzman- Shannon entropy Think: what about limiting cases? 23 / 39

  24. Moreau Envelopes Introduction Bregman Distance Results Bregman Envelopes Envelopes Conclusion Prox Operators Results With x , y ∈ int dom f the following hold: As γ ↓ 0: θ ( y ) ↑ θ ( y ), θ ( ← − Left case: ← − env γ P γθ ( y )) ↑ θ ( y ), 1 γ D f ( ← − P γθ ( y ) , y ) → 0, and ← − 1 P γθ ( y ) → y . θ ( x ) ↑ θ ( x ), θ ( − → − → env γ Right case: P γθ ( x )) ↑ θ ( x ), 2 γ D f ( x , − → P γθ ( x )) → 0, and − → 1 P γθ ( x ) → x . As γ ↑ ∞ : Left case: ← − env γ θ ( y ) ↓ inf θ ( X ) and if argmin θ ⊆ int dom f , 1 then ← − P γθ ( y ) → ← − P argmin θ y as γ ↑ + ∞ . Right case: − → env γ θ ( x ) ↓ inf θ ( X ) and if argmin θ ⊆ int dom f , 2 then − → P γθ ( x ) → − → P argmin θ x as γ ↑ + ∞ . 24 / 39

Recommend


More recommend