regularization of optimal control problems
play

Regularization of optimal control problems Daniel Wachsmuth (RICAM - PowerPoint PPT Presentation

Regularization of optimal control problems Daniel Wachsmuth (RICAM Linz) joint work with Gerd Wachsmuth (TU Chemnitz) 1. Control-constrained problems 2. Tychonov regularization and regularization error estimates 3. Necessary conditions for


  1. Regularization of optimal control problems Daniel Wachsmuth (RICAM Linz) joint work with Gerd Wachsmuth (TU Chemnitz)

  2. 1. Control-constrained problems 2. Tychonov regularization and regularization error estimates 3. Necessary conditions for convergence rates 4. Parameter choice: a discrepancy principle 5. Parameter choice & discretization RICAM special semester Daniel Wachsmuth

  3. Optimization problem 1 Optimization problem: min � Su − z � 2 Y + β � u � L 1 ( Ω ) subject to u ∈ U ad . Here: U = L 2 ( Ω ) , Y Hilbert spaces, S : U → Y linear and compact operator. U ad ⊂ U convex, closed, and non-empty, β ≥ 0 fixed. Motivation: Actuator placement problem RICAM special semester Daniel Wachsmuth

  4. Optimization problem 1 Optimization problem: min � Su − z � 2 Y + β � u � L 1 ( Ω ) subject to u ∈ U ad . Here: U = L 2 ( Ω ) , Y Hilbert spaces, S : U → Y linear and compact operator. U ad ⊂ U convex, closed, and non-empty, β ≥ 0 fixed. Motivation: Actuator placement problem Solvability: If z ∈ R ( S ) or U ad is bounded then problem is solvable. Uniqueness of solutions: If in addition S is injective then solution is unique. RICAM special semester Daniel Wachsmuth

  5. Ill-posedness, difference to inverse problems 2 Ill-posedness: Solutions are not stable with respect to perturbations, i.e. in case where only z δ ≈ z is available. Problem is difficult to solve numerically. ( β > 0 does not help) Difference to inverse problems: Non-attainability: z �∈ S ( U ad ) The constraint u ∈ U ad is not extra information about solution, but a serious constraint: it may hinder us to reach the goal z . RICAM special semester Daniel Wachsmuth

  6. Model problem 3 Elliptic PDE: S is the mapping from u �→ y , where y is the weak solution of − ∆y = u in Ω y = 0 on ∂Ω Optimal control problem: Minimize 1 2 � Su − z � 2 L 2 ( Ω ) + β � u � L 1 ( Ω ) subject to u a ≤ u ≤ u b a.e. on Ω. Here: u a , u b ∈ L 2 ( Ω ), u a ≤ 0 ≤ u b , Y = L 2 ( Ω ). Standing assumption on S : S : U = L 2 ( Ω ) → Y and S ∗ : Y ∗ �→ L ∞ ( Ω ) linear and continuous. RICAM special semester Daniel Wachsmuth

  7. Ill-posedness 4 Recall standing assumption on S : S : L 2 ( Ω ) → Y and S ∗ : Y ∗ �→ L ∞ ( Ω ) linear and continuous. Theorem: Under this assumptions the range of S is closed if and only if it is finite-dimensional. Proof by closed-range theorem and a result of [Grothendieck ’54]. RICAM special semester Daniel Wachsmuth

  8. 1. Control-constrained problems 2. Tychonov regularization and regularization error estimates 3. Necessary conditions for convergence rates 4. Parameter choice: a discrepancy principle 5. Parameter choice & discretization RICAM special semester Daniel Wachsmuth

  9. Regularized problem 5 Noisy data: z δ with � z − z δ � Y ≤ δ (prototype for discretization error) Take α > 0. Regularized problem: Minimize min 1 Y + β � u � L 1 ( Ω ) + α 2 � Su − z δ � 2 2 � u � 2 L 2 subject to u a ≤ u ≤ u b . u δ α , y δ α := Su δ Unique solution in case α > 0: α . Solution of original problem denoted by u 0 , y 0 := Su 0 . Questions: Convergence for ( α, δ ) → 0 ? Choice α = α ( δ )? RICAM special semester Daniel Wachsmuth

  10. Optimality condition 6 Necessary optimality condition: There exists λ δ α ∈ ∂ � · � L 1 ( Ω ) ( u δ α ) α := S ∗ ( z δ − y δ such that with p δ α ) it holds ( αu δ α − p δ α + βλ δ α , u − u δ α ) ≥ 0 ∀ u ∈ U ad . Consequence 1: � y 0 − y δ α � 2 Y + α � u 0 − u δ α � 2 L 2 ≤ α ( u 0 , u 0 − u δ α ) L 2 + δ � y 0 − y δ α � Y Consequence 2: Noise error estimate � y α − y δ α � Y ≤ δ α � Y ≤ 1 δ � u α − u δ √ α 2 RICAM special semester Daniel Wachsmuth

  11. Structure of solutions 7 Bang-bang solutions in case β = 0 : Control u 0 a.e. on the bounds. In general: u 0 discontinuous with jumps across { x ∈ Ω : | p 0 | = β } . RICAM special semester Daniel Wachsmuth

  12. Source conditions 8 Observed convergence rates: � u 0 − u α � L 2 ∼ α 1 / 2 Explanation wanted! Source conditions: e.g. [Neubauer][Engl, Hanke, Neubauer] u 0 �∈ R ( S ∗ ), u 0 can be in R (( S ∗ S ) ν/ 2 ) only for small ν . Source conditions alone cannot explain these convergence rates. Idea: Exploit the structure (discontinuity). RICAM special semester Daniel Wachsmuth

  13. Regularity condition 9 Assumption: There exist a set I ⊂ Ω , a function w ∈ Y , and positive constants κ, c such that it holds: 1. (source condition) I ⊃ { x ∈ Ω : | p 0 ( x ) | = β } and  Proj [ u a , 0] ( S ∗ w ) on { x ∈ Ω : p 0 ( x ) = − β }  u 0 = Proj [0 ,u b ] ( S ∗ w ) on { x ∈ Ω : p 0 ( x ) = + β }  2. (structure of active set) A = Ω \ I and for all ǫ > 0 � < ǫ } � � ≤ c ǫ κ . � � { x ∈ A : 0 < � | p 0 ( x ) | − β meas [Wachsmuth 2 2010] RICAM special semester Daniel Wachsmuth

  14. Regularity condition - comments 10 Source condition: • Gives smoothness of u 0 on I . • Weaker than u 0 = Proj U ad ( S ∗ w ) [Wachsmuth 2 2010] Structure of active set: • Allows to control the size of almost-active sets. • If p 0 ∈ C 1 ( ¯ Ω ) and ∇ p 0 � = 0 on { x : | p 0 ( x ) | = β } then Assumption is fulfilled with κ = 1. [Deckelnick, Hinze 2010] References: • Case I = ∅ : [Felgenhauer 2003][Deckelnick, Hinze 2010][Wachsmuth 2 2009] • Case A = ∅ : ( p 0 = 0) with stronger source condition u 0 = Proj U ad ( S ∗ w ) [Neubauer 1988][Lorenz, R¨ osch 2010] RICAM special semester Daniel Wachsmuth

  15. Regularization error 11 Regularization error estimate: Let the assumption be satisfied. Then we have � y 0 − y α � Y ≤ c α d , � u 0 − u α � L 2 ≤ c α d − 1 2 with  1 if κ ≤ 1 ,  2 − κ   d = 1 if κ > 1 and A � = Ω and w � = 0 ,  κ +1  if κ > 1 and A = Ω or w = 0 .  2 [For κ = 1 we get � u 0 − u α � L 2 = O ( α 1 / 2 ).] Question: What are necessary conditions to obtain these convergence rates? RICAM special semester Daniel Wachsmuth

  16. Regularization error 12 Optimal a-priori choice: With α ∼ δ 1 /d we get � y 0 − y δ α � Y ≤ c δ, α � L 2 ≤ c δ 1 − 1 � u 0 − u δ 2 d . Problem: How to choose α if κ is unknown? RICAM special semester Daniel Wachsmuth

  17. Regularization error - L p -case 13 Weaker assumption: Let S ∗ : Y → L p , 2 < p < ∞ . Regularization error estimate: Let the assumption be satisfied. Then we have � y 0 − y α � Y ≤ c α d , � u 0 − u α � L 2 ≤ c α d − 1 2 , with � 1 + κ � − 1 d = min p , d 1 , d 2 , 2 where d 1 , d 2 are given by   p + κ 2 p if A � = Ω if p ≤ 4 or κ ≤ 1 p − 4 ,   2 p +4 κ − κ p d 1 = , d 2 = + ∞ + ∞ if A = Ω otherwise .   Consistency: no rate for p ց 2, rates for p → ∞ coincide with p = ∞ . RICAM special semester Daniel Wachsmuth

  18. 1. Control-constrained problems 2. Tychonov regularization and regularization error estimates 3. Necessary conditions for convergence rates 4. Parameter choice: a discrepancy principle 5. Parameter choice & discretization RICAM special semester Daniel Wachsmuth

  19. Convergence rate d = 1 14 Suppose � y 0 − y α � Y + � p 0 − p α � L ∞ ≤ c α . Difference quotients y 0 − y α are bounded in Y . α With a special test function  { u 0 } on { x ∈ Ω : | p 0 | � = β }    u ∈ ˜ [ u a , 0] on { x ∈ Ω : p 0 = − β }   [0 , u b ] on { x ∈ Ω : p 0 = β }  it holds ( αu α − ( p α − p 0 ) , ˜ u − u α ) ≥ 0 . Hence ( u 0 + S ∗ ˙ y 0 , ˜ u − u 0 ) ≥ 0 y 0 of y 0 − y α for each weak accumulation point ˙ . α RICAM special semester Daniel Wachsmuth

  20. Convergence rate d = 1 15 Due to construction of ˜ u , we have  Proj [ u a , 0] ( S ∗ ˙ y 0 ) on { x ∈ Ω : p 0 ( x ) = − β }  u 0 = Proj [0 ,u b ] ( S ∗ ˙ on { x ∈ Ω : p 0 ( x ) = + β } y 0 )  Necessary condition to obtain d ≥ 1 : If � y 0 − y α � Y ≤ c α d , d ≥ 1, y 0 ∈ Y such that then there is ˙  Proj [ u a , 0] ( S ∗ ˙ y 0 ) on { x ∈ Ω : p 0 ( x ) = − β }  u 0 = Proj [0 ,u b ] ( S ∗ ˙ y 0 ) on { x ∈ Ω : p 0 ( x ) = + β }  In addition, � y 0 − y α � Y = o ( α ) implies ˙ y 0 = 0 and u 0 = 0 on { x ∈ Ω : | p 0 ( x ) | = β } . • resembles source-condition part of our assumption see also [Neubauer 1988] • source condition realized by derivative of α �→ y α at α = 0. RICAM special semester Daniel Wachsmuth

  21. Convergence rate d > 1 16 Abbreviation: � < ǫ } � � � � µ ( ǫ ) := meas { x ∈ A : 0 < � | p 0 ( x ) | − β Define auxiliary function ˜ u α as solution of u ∈ U ad − ( p 0 , u ) + β � u � L 1 ( Ω ) + α 2 � u � 2 min L 2 . Suppose there exists M, σ > 0 such that − M ≤ u a ≤ − σ ≤ 0 ≤ σ ≤ u b ≤ M. Then � σ � p � σ � L p ( Ω ) ≤ M p µ ( Mα ) . u α � p ≤ � u 0 − ˜ µ 2 α 2 Hence we have the implication u α � 2 L 2 ( Ω ) ≤ Cα d − 1 / 2 µ ( ǫ ) ≤ ˜ C ǫ 2 d − 1 � u 0 − ˜ ⇒ RICAM special semester Daniel Wachsmuth

Recommend


More recommend