Regularity and Gröbner bases of the Rees algebra of edge ideals of bipartite graphs Yairon Cid Ruiz University of Barcelona Journées Nationales de Calcul Formel CIRM, Luminy, January 2018
Definition A bipartite graph G = ( X , Y , E ) consists of two disjoint sets of vertices X = { x 1 , . . . , x n } and Y = { y 1 , . . . , y m } , and a set of edges � ( x , y ) | x ∈ X , y ∈ Y � . E ⊂ bipartite ⇐ ⇒ no odd cycles ⇐ ⇒ 2-colorable. x 1 y 1 b x 2 y 2 a x 3 y 3 c y 4 2
Definition A bipartite graph G = ( X , Y , E ) consists of two disjoint sets of vertices X = { x 1 , . . . , x n } and Y = { y 1 , . . . , y m } , and a set of edges � ( x , y ) | x ∈ X , y ∈ Y � . E ⊂ bipartite ⇐ ⇒ no odd cycles ⇐ ⇒ 2-colorable. x 1 y 1 b x 2 y 2 a x 3 y 3 c y 4 2
Definition Let K be a field and R = K [ x 1 , . . . , x n , y 1 , . . . , y m ]. The edge ideal I = I ( G ), associated to G , is defined by � � I = x i y j | ( x i , y j ) ∈ E . x 1 y 1 � � I = x 1 y 3 , x 2 y 1 , x 3 y 2 , x 3 y 3 , x 3 y 4 ⊂ R x 2 y 2 x 3 y 3 y 4 3
Definition i =0 I i t i ⊂ R [ t ] be the Rees algebra of the edge ideal I . Let Let R ( I ) = � ∞ f 1 , . . . , f q be the square free monomials of degree two generating I . Let S = R [ T 1 , . . . , T q ], and define the following map ψ S = K [ x 1 , . . . , x n , y 1 . . . , y m , T 1 , . . . , T q ] − → R ( I ) ⊂ R [ t ] , ψ ( x i ) = x i , ψ ( y i ) = y i , ψ ( T i ) = f i t . Then the presentation of R ( I ) is given by S / K where K = Ker( ψ ). Problem In terms of the combinatorics of the bipartite graph G , we want to: Describe the universal Gröbner basis of K . Compute the Castelnuovo-Mumford regularity of R ( I ). Study the regularity of the powers of the ideal I . 4
Definition i =0 I i t i ⊂ R [ t ] be the Rees algebra of the edge ideal I . Let Let R ( I ) = � ∞ f 1 , . . . , f q be the square free monomials of degree two generating I . Let S = R [ T 1 , . . . , T q ], and define the following map ψ S = K [ x 1 , . . . , x n , y 1 . . . , y m , T 1 , . . . , T q ] − → R ( I ) ⊂ R [ t ] , ψ ( x i ) = x i , ψ ( y i ) = y i , ψ ( T i ) = f i t . Then the presentation of R ( I ) is given by S / K where K = Ker( ψ ). Problem In terms of the combinatorics of the bipartite graph G , we want to: Describe the universal Gröbner basis of K . Compute the Castelnuovo-Mumford regularity of R ( I ). Study the regularity of the powers of the ideal I . 4
Definition i =0 I i t i ⊂ R [ t ] be the Rees algebra of the edge ideal I . Let Let R ( I ) = � ∞ f 1 , . . . , f q be the square free monomials of degree two generating I . Let S = R [ T 1 , . . . , T q ], and define the following map ψ S = K [ x 1 , . . . , x n , y 1 . . . , y m , T 1 , . . . , T q ] − → R ( I ) ⊂ R [ t ] , ψ ( x i ) = x i , ψ ( y i ) = y i , ψ ( T i ) = f i t . Then the presentation of R ( I ) is given by S / K where K = Ker( ψ ). Problem In terms of the combinatorics of the bipartite graph G , we want to: Describe the universal Gröbner basis of K . Compute the Castelnuovo-Mumford regularity of R ( I ). Study the regularity of the powers of the ideal I . 4
Definition i =0 I i t i ⊂ R [ t ] be the Rees algebra of the edge ideal I . Let Let R ( I ) = � ∞ f 1 , . . . , f q be the square free monomials of degree two generating I . Let S = R [ T 1 , . . . , T q ], and define the following map ψ S = K [ x 1 , . . . , x n , y 1 . . . , y m , T 1 , . . . , T q ] − → R ( I ) ⊂ R [ t ] , ψ ( x i ) = x i , ψ ( y i ) = y i , ψ ( T i ) = f i t . Then the presentation of R ( I ) is given by S / K where K = Ker( ψ ). Problem In terms of the combinatorics of the bipartite graph G , we want to: Describe the universal Gröbner basis of K . Compute the Castelnuovo-Mumford regularity of R ( I ). Study the regularity of the powers of the ideal I . 4
Matrix associated to the presentation of R ( I ) Given the presentation of the Rees algebra ψ : S → R ( I ) ψ ( x i ) = x i , ψ ( y i ) = y i , ψ ( T i ) = f i t . Let A = ( a i , j ) ∈ Z n + m , q be the incidence matrix of G , i.e. each column corresponds to an edge f i . Then we construct the following matrix f 1 t . . . f q t x 1 . . . x n y 1 . . . y m a 1 , 1 . . . a 1 , q e 1 . . . e n e n + 1 . . . e n + m . . ... . . . . M = a n + m , 1 . . . a n + m , q 1 . . . 1 K is a toric ideal (Sturmfels 1996) Txy α + − Txy α − | α ∈ Ker Z ( M ) � � K = 5
Matrix associated to the presentation of R ( I ) Given the presentation of the Rees algebra ψ : S → R ( I ) ψ ( x i ) = x i , ψ ( y i ) = y i , ψ ( T i ) = f i t . Let A = ( a i , j ) ∈ Z n + m , q be the incidence matrix of G , i.e. each column corresponds to an edge f i . Then we construct the following matrix f 1 t . . . f q t x 1 . . . x n y 1 . . . y m a 1 , 1 . . . a 1 , q e 1 . . . e n e n + 1 . . . e n + m . . ... . . . . M = a n + m , 1 . . . a n + m , q 1 . . . 1 K is a toric ideal (Sturmfels 1996) Txy α + − Txy α − | α ∈ Ker Z ( M ) � � K = 5
Matrix associated to the presentation of R ( I ) Given the presentation of the Rees algebra ψ : S → R ( I ) ψ ( x i ) = x i , ψ ( y i ) = y i , ψ ( T i ) = f i t . Let A = ( a i , j ) ∈ Z n + m , q be the incidence matrix of G , i.e. each column corresponds to an edge f i . Then we construct the following matrix f 1 t . . . f q t x 1 . . . x n y 1 . . . y m a 1 , 1 . . . a 1 , q e 1 . . . e n e n + 1 . . . e n + m . . ... . . . . M = a n + m , 1 . . . a n + m , q 1 . . . 1 K is a toric ideal (Sturmfels 1996) Txy α + − Txy α − | α ∈ Ker Z ( M ) � � K = 5
Example x 1 y 1 � � I = x 1 y 2 , x 2 y 1 , x 2 y 2 x 2 0 → K → S → R ( I ) → 0 y 2 T 1 �→ x 1 y 2 t , T 2 �→ x 2 y 1 t , T 3 �→ x 2 y 2 t x 1 y 2 t x 2 y 1 t x 2 y 2 t x 1 x 2 y 1 y 2 x 1 1 0 0 1 0 0 0 x 2 0 1 1 0 1 0 0 M = y 1 0 1 0 0 0 1 0 y 2 1 0 1 0 0 0 1 t 1 1 1 0 0 0 0 � α + α + α + α + α + α + α + K = T 1 T 1 2 T 2 3 x 3 1 x 4 2 y 5 1 y 6 7 2 � α − α − α − α − α − α − α − − T T T x x y y | α ∈ Ker Z ( M ) 1 2 3 4 5 6 7 1 2 3 1 2 1 2 6
Example x 1 y 1 � � I = x 1 y 2 , x 2 y 1 , x 2 y 2 x 2 0 → K → S → R ( I ) → 0 y 2 T 1 �→ x 1 y 2 t , T 2 �→ x 2 y 1 t , T 3 �→ x 2 y 2 t x 1 y 2 t x 2 y 1 t x 2 y 2 t x 1 x 2 y 1 y 2 x 1 1 0 0 1 0 0 0 x 2 0 1 1 0 1 0 0 M = y 1 0 1 0 0 0 1 0 y 2 1 0 1 0 0 0 1 t 1 1 1 0 0 0 0 � α + α + α + α + α + α + α + K = T 1 T 1 2 T 2 3 x 3 1 x 4 2 y 5 1 y 6 7 2 � α − α − α − α − α − α − α − − T T T x x y y | α ∈ Ker Z ( M ) 1 2 3 4 5 6 7 1 2 3 1 2 1 2 6
Example x 1 y 1 � � I = x 1 y 2 , x 2 y 1 , x 2 y 2 x 2 0 → K → S → R ( I ) → 0 y 2 T 1 �→ x 1 y 2 t , T 2 �→ x 2 y 1 t , T 3 �→ x 2 y 2 t x 1 y 2 t x 2 y 1 t x 2 y 2 t x 1 x 2 y 1 y 2 x 1 1 0 0 1 0 0 0 x 2 0 1 1 0 1 0 0 M = y 1 0 1 0 0 0 1 0 y 2 1 0 1 0 0 0 1 t 1 1 1 0 0 0 0 � α + α + α + α + α + α + α + K = T 1 T 1 2 T 2 3 x 3 1 x 4 2 y 5 1 y 6 7 2 � α − α − α − α − α − α − α − − T T T x x y y | α ∈ Ker Z ( M ) 1 2 3 4 5 6 7 1 2 3 1 2 1 2 6
Universal Gröbner basis of K � U = G < ( K ) < runs over all possible term orders ( G < ( K ) denotes reduced Gröbner basis with respect to < ) Circuit α ∈ Ker Z ( M ) is called a circuit if it has minimal support supp( α ) with respect to inclusion and its coordinates are relatively prime. In general we have that the set of circuits is contained in U . Lemma Txy α + − Txy α − | α is a circuit of M � � If G is a bipartite graph then U = . Proof. From Gitler, Valencia, and Villarreal 2005, then M is totally unimodular. Hence, by Sturmfels 1996 we get the equality. 7
Universal Gröbner basis of K � U = G < ( K ) < runs over all possible term orders ( G < ( K ) denotes reduced Gröbner basis with respect to < ) Circuit α ∈ Ker Z ( M ) is called a circuit if it has minimal support supp( α ) with respect to inclusion and its coordinates are relatively prime. In general we have that the set of circuits is contained in U . Lemma Txy α + − Txy α − | α is a circuit of M � � If G is a bipartite graph then U = . Proof. From Gitler, Valencia, and Villarreal 2005, then M is totally unimodular. Hence, by Sturmfels 1996 we get the equality. 7
Universal Gröbner basis of K � U = G < ( K ) < runs over all possible term orders ( G < ( K ) denotes reduced Gröbner basis with respect to < ) Circuit α ∈ Ker Z ( M ) is called a circuit if it has minimal support supp( α ) with respect to inclusion and its coordinates are relatively prime. In general we have that the set of circuits is contained in U . Lemma Txy α + − Txy α − | α is a circuit of M � � If G is a bipartite graph then U = . Proof. From Gitler, Valencia, and Villarreal 2005, then M is totally unimodular. Hence, by Sturmfels 1996 we get the equality. 7
Recommend
More recommend