recent analytical and numerical studies of asymptotically
play

Recent analytical and numerical studies of asymptotically AdS - PowerPoint PPT Presentation

Recent analytical and numerical studies of asymptotically AdS spacetimes in spherical symmetry Maciej Maliborski and Andrzej Rostworowski Institute of Physics, Jagiellonian University, Krak ow New frontiers in dynamical gravity, Cambridge,


  1. Recent analytical and numerical studies of asymptotically AdS spacetimes in spherical symmetry Maciej Maliborski and Andrzej Rostworowski Institute of Physics, Jagiellonian University, Krak´ ow New frontiers in dynamical gravity, Cambridge, 24th March, 2014

  2. Outline and motivation ◮ The phase space of solutions to the Einstein equations with Λ < 0 has a complicated structure. Close to the pure anti-de Sitter (AdS) space there exists a variety of coherent structures: geons [ Dias,Horowitz&Santos, 2011 ] , [ Dias,Horowitz,Marolf&Santos, 2012 ] , boson stars (standing waves) [ Buchel,Liebling&Lehner, 2013 ] and time-periodic solutions [ M&Rostworowski, 2013 ] . ◮ The construction of non-generic configurations which stay close to the AdS solution does not imply their stability. ◮ To understand the mechanism of (in)stability of asymptotically AdS solutions we study a spherically symmetric complex self-gravitating massless scalar field (the simplest model possessing standing wave solutions). ◮ We conjecture that the dispersive spectrum of linear perturbations of standing waves makes them immune to the instability. 1/19

  3. Complex (real) self-gravitating massless scalar field � φ − 1 � 2 g αβ ∇ µ φ ∇ µ ¯ ∇ α φ ∇ β ¯ , Λ = − d ( d − 1) / (2 ℓ 2 ) , G αβ +Λ g αβ = 8 πG φ g αβ ∇ α ∇ β φ = 0 . ◮ Spherically symmetric parametrization of asymptotically AdS spacetimes ℓ 2 ds 2 = − Ae − 2 δ dt 2 + A − 1 dx 2 + sin 2 x d Ω 2 � � , cos 2 x S d − 1 where ( t, x ) ∈ R × [0 , π/ 2) ◮ Field equations with auxiliary variables: Φ = φ ′ and Π = A − 1 e δ ˙ φ A ′ = d − 2 + 2 sin 2 x (1 − A ) + Aδ ′ , δ ′ = − sin x cos x | Φ | 2 + | Π | 2 � � , sin x cos x � ′ , 1 � ′ . ˙ ˙ Ae − δ Π tan d − 1 x Ae − δ Φ � � Φ = Π = tan d − 1 x ◮ Units 8 πG = d − 1 and notation ′ = ∂ x , ˙= ∂ t 2/19

  4. Boundary conditions ◮ We require smooth evolution and finiteness of the total mass m ( t, x ) = sin d − 2 x � � 1 − A ( t, x ) , cos d x π/ 2 � | Φ | 2 + | Π | 2 � tan d − 1 x dx . � M = x → π/ 2 m ( t, x ) = lim A 0 Then, there is no freedom in prescribing boundary data at x = π/ 2 : reflecting boundary conditions ◮ Conserved charge for the complex field � π/ 2 Π tan d − 1 x dx . φ ¯ Q = −ℑ 0 3/19

  5. Linear perturbations of AdS ◮ Linear equation on an AdS background [ Ishibashi&Wald, 2004 ] 1 ¨ tan d − 1 x ∂ x � � φ + Lφ = 0 , L = − tan d − 1 x ∂ x , ◮ Eigenvalues and eigenvectors of L are ( j = 0 , 1 , . . . ) � j !( j + d − 1)! cos d x P ( d/ 2 − 1 ,d/ 2) ω 2 j = ( d +2 j ) 2 , e j ( x ) = 2 (cos 2 x ) , j Γ( j + d/ 2) ◮ AdS is linearly stable, linear solution � φ ( t, x ) = a j cos( ω j t + b j ) e j ( x ) , j ≥ 0 with a j , b j determined by the initial data φ (0 , x ) and ˙ φ (0 , x ) 4/19

  6. Real scalar field — time-periodic solutions ◮ We search for solutions of the form ( | ε | ≪ 1 ) φ ( t, x ) = ε cos( ω γ t ) e γ ( x ) + O ( ε 3 ) , solution bifurcating from single eigenmode ◮ We make an ansatz for the ε -expansion ε λ φ λ ( τ, x ) , � φ = ε cos( τ ) e γ ( x ) + odd λ ≥ 3 ε λ δ λ ( τ, x ) , ε λ A λ ( τ, x ) . � � δ = 1 − A = even λ ≥ 2 even λ ≥ 2 where we rescaled time variable ε λ ω γ,λ , � τ = Ω t, Ω = ω γ + even λ ≥ 2 5/19

  7. Time-periodic solution — perturbative construction ◮ We decompose functions φ λ , δ λ , A λ in the eigenbasis � φ λ = f λ,j ( τ ) e j ( x ) , j ≥ 0 � � δ λ = d λ,j ( τ ) ( e j ( x ) − e j (0)) , A λ = a λ,j ( τ ) e j ( x ) , j ≥ 0 j ≥ 0 with expansion coefficients being periodic functions ◮ This reduces the constraint equations to algebraic system and the wave equation to a set of forced harmonic oscillator equations � π/ 2 S λ e k ( x ) tan d − 1 x dx , ω 2 γ ∂ ττ + ω 2 � � f λ,k = k 0 with initial conditions ˙ f λ,k (0) = c λ,k , f λ,k (0) = ˜ c λ,k , ◮ We use the integration constants { c λ,k , ˜ c λ,k } and frequency expansion coefficients ω γ,λ to remove all of the resonant terms cos( ω k /ω γ ) τ or sin( ω k /ω γ ) τ 6/19

  8. Time-periodic solution — numerical construction We make an ansatz ( τ = Ω t ) � � φ = f i,j cos((2 i + 1) τ ) e j ( x ) , 0 ≤ i<N 0 ≤ j<K � � Π= p i,j sin((2 i + 1) τ ) e j ( x ) . 0 ≤ i<N 0 ≤ j<K ◮ Solution given by the set of Π � 2 2 × K × N + 1 numbers ◮ Two equations on each of K × N collocation points Τ ◮ One extra equation for the � x k , Τ n � dominant mode condition � 0 Π � 2 f i,γ = ε . x 0 ≤ i<N 7/19

  9. Time-periodic solution — perturbative and numerical results For d = 4 , γ = 0 1. � 10 � 10 Ε � j 5 10 15 0 � 50 � 100 log 10 � f i,j � Ε �� � 150 0 10 20 i 30 40 � � φ = f i,j cos((2 i + 1) τ ) e j ( x ) , 0 ≤ i<N 0 ≤ j<K 8/19

  10. Time-periodic solution — non-linear stability Closed curves on the 4.7 � 10 � 13 4.7 � 10 � 13 slices of phase space – strong evidence for the non-linear stability . p 10 p 10 0 0 Sections of the phase space spanned by the set � 4.7 � 10 � 13 � 4.7 � 10 � 13 of Fourier coefficients � 4.9 � 10 � 11 4.9 � 10 � 11 � 2. � 10 � 14 2. � 10 � 14 0 0 f 6 f 10 { f j ( t ) , p k ( t ) } , 4.9 � 10 � 11 6.7 � 10 � 12 � φ = f j ( t ) e j ( x ) , 0 ≤ j<K f 6 f 7 0 0 � Π = p j ( t ) e j ( x ) . 0 ≤ j<K � 4.9 � 10 � 11 � 6.7 � 10 � 12 � 1.7 � 10 � 6 1.7 � 10 � 6 � 1.6 � 10 � 8 1.6 � 10 � 8 0 0 [Animation] f 2 f 4 The d = 4 , γ = 0 , ε = 0 . 01 case. 9/19

  11. Complex scalar field — standing waves ◮ The standing wave ansatz φ ( t, x ) = e i Ω t f ( x ) , Ω > 0 , δ ( t, x ) = d ( x ) , A ( t, x ) = A ( x ) , with f ( x ) a real function. The field equations reduce to − Ω 2 e d 1 tan d − 1 x A e − d f ′ � ′ , � A f = tan d − 1 x A ′ = d − 2 + 2 sin 2 x (1 − A ) + Ad ′ , sin x cos x � 2 � � � Ω e d d ′ = − sin x cos x f ′ 2 + A f , ◮ Boundary conditions d ′ ( π/ 2) = 0 , f ( π/ 2) = 0 , A ( π/ 2) = 1 , f ′ (0) = 0 , A (0) = 1 , d (0) = 0 . 10/19

  12. Standing waves — perturbative construction ◮ We look for solutions of the system of the form ( | ε | ≪ 1 ) f 1 ( x ) = e γ ( x ) ε λ f λ ( x ) , � f ( x )= e γ (0) , odd λ ≥ 1 ε λ d λ ( x ) , ε λ A λ ( x ) , � � d ( x )= 1 − A ( x ) = even λ ≥ 2 even λ ≥ 2 ε λ ω γ,λ , � Ω = ω γ + even λ ≥ 2 where e γ ( x ) is a dominant mode in the solution in the limit ε → 0 ◮ Decomposition into the eigenbasis e j ( x ) ˆ � f λ ( x )= f λ,j e j ( x ) , j � ˆ � ˆ d λ ( x )= d λ,j ( e j ( x ) − e j (0)) , A λ ( x ) = A λ,j e j ( x ) . j j ◮ System of differential equations → set of algebraic equations for the Fourier coefficients 11/19

  13. Standing waves — numerical construction ◮ Ansatz N − 1 ˆ � f ( x )= f j e j ( x ) , j =0 N − 1 N − 1 � ˆ � ˆ d ( x )= d j ( e j ( x ) − e j (0)) , A ( x ) = 1 − A j e j ( x ) . j =0 j =0 ◮ Solution given by the set of 3 N + 1 numbers ◮ Three equations on each of N collocation points { x j ∈ (0 , π/ 2) : e N ( x j ) = 0 , j = 0 , . . . , N − 1 } . ◮ One extra equation for the value of central density f (0) = ε . ◮ Non-linear system solved with the Newton-Raphson algorithm 12/19

  14. Standing waves — perturbative and numerical results 13 7 7 13 � � 0 10 10 10 10 6 4 0 2 � 2 � 4 � 6 10 1 8 5 6 Λ � 10 4 15 2 19 0 10 20 30 36 0 0.0 0.1 0.2 0.3 0.4 0.5 j � The Fourier coefficients ˆ Frequency Ω of a fundamental f λ,j of a standing wave versus f (0) = ε for ground state standing wave in d = 4 . d = 2 , 3 , 4 , 5 , 6 . 13/19

  15. Standing waves — linear perturbation [ Gleiser&Watkins, 1989 ] , [ Choptuik&Hawley, 2000 ] , [ Buchel,Liebling&Lehner, 2013 ] ◮ Perturbative ansatz ( | µ | ≪ 1) φ ( t, x ) = e i Ω t � � f ( x ) + µ ψ ( t, x ) + · · · , A ( t, x ) = A ( x ) (1 + µ α ( t, x ) + · · · ) , δ ( t, x ) = d ( x ) + µ ( α ( t, x ) − β ( t, x )) + · · · , with a harmonic time dependence ψ ( t, x ) = ψ 1 ( x ) e i X t + ψ 2 ( x ) e − i X t , α ( t, x ) = α ( x ) cos X t , β ( t, x ) = β ( x ) cos X t . ◮ Set of linear algebraic-differential equations for α ( x ) , β ( x ) and ψ 1 ( x ) , ψ 2 ( x ) 14/19

  16. Standing waves — linear perturbation ◮ Numerical approach or perturbative ε -expansion ◮ Linear problem – the condition for the χ 0 j − ( χ 0 − ω γ ) 2 = 0 , � Lψ 1 , 0 − ( χ 0 − ω γ ) 2 ψ 1 , 0 = 0 , � ω 2 ⇒ k − ( χ 0 + ω γ ) 2 = 0 . Lψ 2 , 0 − ( χ 0 + ω γ ) 2 ψ 2 , 0 = 0 , ω 2 ◮ Thus ◮ ψ 1 , 0 = e j ( x ) , ψ 2 , 0 ≡ 0 , and χ 0 = ω γ ± ω j , ◮ ψ 1 , 0 ≡ 0 , ψ 2 , 0 = e k ( x ) , and χ 0 = − ω γ ± ω k . ◮ From a form of perturbative ansatz we take χ ± ψ 1 , 0 = e ζ ( x ) , ψ 2 , 0 = 0 , 0 = ω γ ± ω ζ . 15/19

Recommend


More recommend