radiative corrections to e e
play

Radiative corrections to e + e + Szymon Tracz Institute of - PowerPoint PPT Presentation

Motivation NLO corrections to pion pair production Results Conclusions and outlook Radiative corrections to e + e + Szymon Tracz Institute of Physics, University of Silesia Katowice June 20, 2018 Szymon Tracz Radiative


  1. Motivation NLO corrections to pion pair production Results Conclusions and outlook Radiative corrections to e + e − → π + π − γ Szymon Tracz Institute of Physics, University of Silesia Katowice June 20, 2018 Szymon Tracz Radiative corrections to e + e − → π + π − γ

  2. Motivation NLO corrections to pion pair production Results Conclusions and outlook Outline Motivation 1 NLO corrections to pion pair production 2 Results 3 Conclusions and outlook 4 Szymon Tracz Radiative corrections to e + e − → π + π − γ

  3. Motivation NLO corrections to pion pair production Results Conclusions and outlook KLOE, CMD-2 and SND measurements A. Anastasi et al. [KLOE-2 Collaboration], JHEP 1803 (2018) 173 Szymon Tracz Radiative corrections to e + e − → π + π − γ

  4. Motivation NLO corrections to pion pair production Results Conclusions and outlook BaBar, BES and KLOE measurements M. Ablikim et al. [BESIII Collaboration], Phys. Lett. B 753 (2016) 629 Szymon Tracz Radiative corrections to e + e − → π + π − γ

  5. Motivation NLO corrections to pion pair production Results Conclusions and outlook BaBar, BES and KLOE measurements A. Anastasi et al. [KLOE-2 Collaboration], JHEP 1803 (2018) 173 Szymon Tracz Radiative corrections to e + e − → π + π − γ

  6. Motivation NLO corrections to pion pair production Results Conclusions and outlook d σ ( e + e − → hadrons + γ isr ) = H ( Q 2 , θ γ ) d σ ( e + e − → hadrons )( Q 2 ) measurement of R ( s ) over the wide e − hadronic current range of energies, from threshold up to √ s Q 2 hadrons large luminosity from factories compensate α/π from photon γ e + radiation radiative corrections precise measurement involves radiative corrections FSR contribution has to be subtracted Monte Carlo generators needed (Phokhara) Szymon Tracz Radiative corrections to e + e − → π + π − γ

  7. Motivation NLO corrections to pion pair production Results Conclusions and outlook Phokhara Monte Carlo generator PHOKHARA 9.3: π + π − , µ + µ − , 4 π , ¯ NN , 3 π , KK , Λ¯ Λ, P γ , J /ψ , ψ (2 s ), χ c 1 , χ c 2 -ISR at NLO: virtual corrections to one photon events and two photon emission at tree level -FSR at NLO: π + π − , µ + µ − , K + K − , ¯ pp -tagged or untagged photon -ISR at NNLO for e + e − → hadrons (muons) Szymon Tracz Radiative corrections to e + e − → π + π − γ

  8. Motivation NLO corrections to pion pair production Results Conclusions and outlook NLO corrections for e + e − → µ + µ − γ F. Campanario, H. Czy˙ z, J. Gluza, M. Gunia, T. Riemann, G. Rodrigo and V. Yundin, JHEP 1402 (2014) 114,[arXiv:1312.3610 [hep-ph]]. Szymon Tracz Radiative corrections to e + e − → π + π − γ

  9. Motivation NLO corrections to pion pair production Results Conclusions and outlook NLO corrections for e + e − → µ + µ − γ F. Campanario, H. Czy˙ z, J. Gluza, M. Gunia, T. Riemann, G. Rodrigo and V. Yundin, JHEP 1402 (2014) 114,[arXiv:1312.3610 [hep-ph]]. Szymon Tracz Radiative corrections to e + e − → π + π − γ

  10. Motivation NLO corrections to pion pair production Results Conclusions and outlook Two photons emission Szymon Tracz Radiative corrections to e + e − → π + π − γ

  11. Motivation NLO corrections to pion pair production Results Conclusions and outlook Virtual corrections Szymon Tracz Radiative corrections to e + e − → π + π − γ

  12. Motivation NLO corrections to pion pair production Results Conclusions and outlook Modeling pion - photon interaction -Factorization of the form factor: F π ( s ) × sQED = F π ( q 2 ) × sQED = -Real emission proportional to the form factor -Form factor: � F π ( q 2 ) = ρ n BW ρ n ( q 2 ) c π n -Renormalizable model H. Czyz, A. Grzelinska and J. H. Kuhn, Phys. Rev. D 81 (2010) 094014 Szymon Tracz Radiative corrections to e + e − → π + π − γ

  13. Motivation NLO corrections to pion pair production Results Conclusions and outlook Tests of the code check of the scalar integrals using few different libraries (QCDLOOP, LoopTools) comparison of two independent codes check the stability of the code (soft, collinear limit) - agreement at the level 10 − 5 test for the independence on the separation parameter between soft and hard part ( below 1 � ) cancelation of infrared divergences between soft and virtual part gauge invariance Szymon Tracz Radiative corrections to e + e − → π + π − γ

  14. Motivation NLO corrections to pion pair production Results Conclusions and outlook √ s = 1 . 02 GeV Pion tracks: 50 o < θ π ± < 130 o , | p z π ± | > 90 MeV Missing photon angle: | cos θ γ | > cos 15 o Track mass: m trk > 130 MeV q 2 ∈ (0 . 35 , 0 . 95) 0 . 002 KLOE 2008 0 . 0015 0 . 001 dσ ( old + penta ) − dσ ( old ) 0 . 0005 0 dσ ( old ) − 0 . 0005 − 0 . 001 − 0 . 0015 − 0 . 002 − 0 . 0025 0 . 55 0 . 6 0 . 65 0 . 7 0 . 75 0 . 8 0 . 85 0 . 9 0 . 95 1 � Q 2 [ GeV ] Szymon Tracz Radiative corrections to e + e − → π + π − γ

  15. Motivation NLO corrections to pion pair production Results Conclusions and outlook √ s = 3 . 773 GeV Pion tracks: 22 . 9 o < θ π ± < 157 . 1 o , | p T π ± | > 300 MeV Minimal photon energy: E γ > 400 MeV Missing photon angle: | cos θ γ | < 0 . 8 or 0 . 86 < | cos θ γ | < 0 . 92 q 2 ∈ (0 . 35 , 0 . 95) 0 . 003 BES 2016 0 . 002 0 . 001 dσ ( old + penta ) − dσ ( old ) 0 dσ ( old ) − 0 . 001 − 0 . 002 − 0 . 003 − 0 . 004 0 . 55 0 . 6 0 . 65 0 . 7 0 . 75 0 . 8 0 . 85 0 . 9 0 . 95 1 � Q 2 [ GeV ] Szymon Tracz Radiative corrections to e + e − → π + π − γ

  16. Motivation NLO corrections to pion pair production Results Conclusions and outlook √ s = 10 . 56 GeV Pion tracks: 20 o < θ π ± < 160 o , | p T π ± | > 300 MeV Minimal photon energy: E γ > 3 GeV Missing photon angle: 20 o < θ γ < 160 o | q 1 | > 1 GeV ( π − ) and | q 2 | > 1 GeV ( π + ) q 2 ∈ (0 . 35 , 0 . 95) 0 . 015 BABAR 2012 0 . 01 dσ ( old + penta ) − dσ ( old ) 0 . 005 dσ ( old ) 0 − 0 . 005 − 0 . 01 0 . 55 0 . 6 0 . 65 0 . 7 0 . 75 0 . 8 0 . 85 0 . 9 0 . 95 1 Q 2 [ GeV ] � Szymon Tracz Radiative corrections to e + e − → π + π − γ

  17. Motivation NLO corrections to pion pair production Results Conclusions and outlook Leading logarithmic approximation for virtual FSR corrections 0 . 004 KLOE 2008 0 . 002 0 dσ ( full ) − dσ ( old ) dσ ( old ) − 0 . 002 − 0 . 004 − 0 . 006 − 0 . 008 0 . 6 0 . 65 0 . 7 0 . 75 0 . 8 0 . 85 0 . 9 0 . 95 1 Q 2 [ GeV ] � Szymon Tracz Radiative corrections to e + e − → π + π − γ

  18. Motivation NLO corrections to pion pair production Results Conclusions and outlook Pion form factor H. Czyz, A. Grzelinska and J. H. Kuhn, Phys. Rev. D 81 (2010) 094014 Szymon Tracz Radiative corrections to e + e − → π + π − γ

  19. Motivation NLO corrections to pion pair production Results Conclusions and outlook Conclusions The size of the pentabox contribution is too small to be able to explain discrepancies between KLOE and BABAR data. For KLOE experiment missing virtual FSR corrections may be non negligible but small For BaBar and BES experiment virtual FSR corrections are small due to the behavior of the form factor Forthcoming developments Implementation of the radiative corrections to initial states at two-loop level for the process e + e − → hadrons + γ using leading logarithmic approximation Szymon Tracz Radiative corrections to e + e − → π + π − γ

Recommend


More recommend