quantum symmetric spaces from refmection equation and
play

Quantum symmetric spaces from refmection equation and module - PowerPoint PPT Presentation

Quantum symmetric spaces from refmection equation and module categories Makoto Yamashita ( ) joint works with Kenny De Commer, Sergey Neshveyev, Lars Tuset University of Oslo XXXVIII Workshop on Geometric Methods in Physics


  1. Quantum symmetric spaces from refmection equation and module categories Makoto Yamashita ( 山下 真 ) joint works with Kenny De Commer, Sergey Neshveyev, Lars Tuset University of Oslo XXXVIII Workshop on Geometric Methods in Physics Białowieża, 2019 July

  2. = Introduction overview Yang–Baxter equation Braided tensor categories in mathematical physics: • quantum integrable systems (scattering in quantized setting) • quantum fjeld theory (intrinsic symmetry of quantum fjelds) • quantum groups (quantized spaces with group law) Hopf algebra universal R -matrix braided tensor category Knizhnik–Zamolodchikov equation Yang–Baxter equation Often: deformation of simple Lie groups ⇝ matrix solution to Yang–Baxter equation Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 1 / 23

  3. Introduction overview Next to quantize: symmetric spaces Defjnition (Symmetric space) • Riemannian manifold M • can model ( x 1 , … , x n ) ↦ (− x 1 , … , − x n ) by isometry 1 U = Iso + ( M ) : orientation preserving isometries 2 M ≅ U / Stab ( p ) for any p ∈ M Example ( 2 -sphere S 2 ⊂ ℝ 3 ) • symmetry around ( 1 , 0 , 0 ) : ( x , y , z ) ↦ ( x , − y , − z ) • S 2 ≅ SU ( 2 )/ SO ( 2 ) Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 2 / 23

  4. Introduction overview Spoiler: how it will go Quantization will be ribbon twist braided module category : add refmection operator to Yang–Baxter equation X U “(quasi)particle bouncing off the boundary wall” U : quasiparticle following braid statistics X : quasiparticle on “boundary” X U Mathematically: • U : an object of a braided monoidal category 𝒟 • X : an object of a module category 𝒠 , X ⊗ U makes sense in 𝒠 • refmection operator: natural isomorphism X ⊗ U → X ⊗ U or better… Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 3 / 23

  5. = Introduction overview Spoiler: how it will go Quantization will be ribbon twist braided module category : add ribbon twist-braid operator to Yang–Baxter equation U X such that X σ ( U ) with braided automorphism σ For irreducible compact symmetric spaces: • purely algebraic quantization: Letzter–Kolb coideals of 𝒱 q (𝔳) • transcendental quantization: cyclotomic Knizhnik–Zamolodchikov equations • classifjcation through co-Hochschild cohomology Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 3 / 23

  6. Introduction Poisson geometry Poisson manifolds Defjnition (Poisson manifold) Poisson bracket { f 1 , f 2 } ∈ C ∞ ( M ) for f i ∈ C ∞ ( M ) : • ( C ∞ ( M ), {⋅, ⋅}) : Lie algebra • Leibniz rule { f 1 , f 2 f 3 } = { f 1 , f 2 } f 3 + { f 1 , f 3 } f 2 Example (Sklyanin bracket on SU ( 2 ) ) C ∞ ( SU ( 2 )) = ⟨ x i , j ∣ 1 ≤ i , j ≤ 2 coordinate functions ⟩ { x ij , x kl } = δ 2 i δ 1 k x 1 j x 2 l − δ 1 i δ 2 k x 2 j x 1 l − δ j 1 δ l 2 x i 2 x k 1 + δ j 2 δ l 1 x i 1 x k 2 Problem (deformation quantization) Can we fjnd associative products ⋆ ℏ on (large subspace of) C ∞ ( M ) 1 such that { f 1 , f 2 } = lim ℏ→ 0 ℏ ( f 1 ⋆ ℏ f 2 − f 2 ⋆ ℏ f 1 ) ? Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 4 / 23

  7. Introduction Poisson geometry Poisson–Lie groups and homogeneous spaces With Poisson structure on U , M , N , … • f ∶ M → N is a Poisson map if f # ∶ C ∞ ( N ) → C ∞ ( M ) respects the brackets • U is a Poisson–Lie group if the product map U × U → U is Poisson • action U ↷ M is Poisson if U × M → M is Poisson Lie algebraic characterizations (Drinfeld) Poisson–Lie group structure on U ↔ Lie bialgebra δ ∶ 𝔳 → ⋀ 2 𝔳 ↔ classical Yang–Baxter equation for r s.t. δ ( x ) = [ r , Δ( x )] Poisson action U ↷ U / K ↔ coisotropic subalg 𝔩 ⊂ 𝔳 : δ (𝔩) ⊂ 𝔩 ⊗ 𝔳 + 𝔳 ⊗ 𝔩 Foth–Lu: possible for U = Iso + ( M ) ↷ M compact symmetric space Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 5 / 23

  8. Introduction Poisson geometry Poisson–Lie groups and homogeneous spaces With Poisson structure on U , M , N , … • f ∶ M → N is a Poisson map if f # ∶ C ∞ ( N ) → C ∞ ( M ) respects the brackets • U is a Poisson–Lie group if the product map U × U → U is Poisson • action U ↷ M is Poisson if U × M → M is Poisson Lie algebraic characterizations (Drinfeld) Poisson–Lie group structure on U ↔ Lie bialgebra δ ∶ 𝔳 → ⋀ 2 𝔳 ↔ classical Yang–Baxter equation for r s.t. δ ( x ) = [ r , Δ( x )] Poisson action U ↷ U / K ↔ coisotropic subalg 𝔩 ⊂ 𝔳 : δ (𝔩) ⊂ 𝔩 ⊗ 𝔳 + 𝔳 ⊗ 𝔩 Example (Poisson homogeneous structures on S 2 ) (SU ( 2 ) , Sklyanin bracket) acts on ( S 2 , { x i , x i + 1 } = ( x 1 + t ) x i + 2 ) (index ( x i ) 3 i = 1 : coordinate on ℝ 3 ⊃ S 2 , t ∈ ℝ mod 3 ) Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 5 / 23

  9. ℏ ℏ ℏ Quantization Hopf algebraic Quantum groups Drinfeld–Jimbo deformation of universal enveloping algebra U (𝔳) can be deformed as a Hopf algebra 𝒱 ℏ (𝔳) ; ‘just’ deform coproduct: Δ ℏ ( x ) − fmip Δ ℏ ( x ) = 2 ℏ δ ( x ) + higher order in ℏ for x ∈ 𝔳 Example ( 𝒱 ℏ (𝔱𝔳( 2 )) ) • generators: E ℏ , F ℏ , K ℏ = e π √− 1 ℏ H • relations: K ℏ E ℏ K − 1 = e 2 π √− 1 ℏ E ℏ , K ℏ F ℏ K − 1 = e − 2 π √− 1 ℏ F ℏ , E ℏ F ℏ − F ℏ E ℏ = ( K ℏ − K − 1 ℏ )/( e π √− 1 ℏ − e − π √− 1 ℏ ) • coproduct: Δ ℏ ( K ℏ ) = K ℏ ⊗ K ℏ Δ ℏ ( E ℏ ) = E ℏ ⊗ K ℏ + 1 ⊗ E ℏ , Δ ℏ ( F ℏ ) = F ℏ ⊗ 1 + K − 1 ⊗ F ℏ ℏ = K − 1 Unitary structure (when ℏ ∈ √− 1 ℝ ): K ∗ ℏ = K ℏ , E ∗ ℏ = F ℏ K ℏ , F ∗ ℏ E ℏ Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 6 / 23

  10. Quantization Hopf algebraic Deformation quantization from matrix coeffjcients dual Hopf algebra of matrix coeffjcients 𝒫 ℏ ( U ) = ⟨ 𝒱 ℏ (𝔳) → ℂ , T ↦ φ ( T ξ ) ∣ ξ ∈ V ∶ (admissible) fjnite dimensional 𝒱 ℏ (𝔳) -module , φ ∈ V ∗ ⟩ 𝒫 ℏ ( U ) is a Hopf algebra by: • linear combination from direct sum modules • product, coproduct by transpose of Δ ℏ , product in 𝒱 ℏ (𝔳) • unitary structure from unitary structure and antipode of 𝒱 ℏ (𝔳) ⟨ K i ,ℏ ∣ i ∶ vertex of Dynkin diagram ⟩ ⊂ 𝒱 ℏ (𝔳) ⇝ highest weight theory • ‘same classifjcation’ of irreducible fjnite dimensional modules • 𝒫 ℏ ( U ) ≅ ⨁ π ∶ Irr 𝒱 ℏ (𝔳) V ∗ π ⊗ V π : ‘same’ coalgebra as 𝒫 ( U ) ⇝ Coalgebra identifjcation 𝒫 ℏ ( U ) = 𝒫 ( U ) solves deformation quantization problem Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 7 / 23

  11. Quantization Hopf algebraic Equivariant quantization Given Poisson action U ↷ M : Problem (Quantization as U ℏ -algebras) ∃ deformation quantization 𝒫 ℏ ( M ) as 𝒫 ℏ ( U ) -comodule algebra? Example (Podleś spheres, c ≥ 0 ) 𝒫 ( S 2 ℏ, c ) = ⟨ A = A ∗ , B , B ∗ ∣ BA = q 2 AB , B ∗ B = A − A 2 + c , BB ∗ = q 2 − q 4 + c ⟩ If c = c (ℏ) depends on ℏ , 𝒫 ( S 2 ℏ, c (ℏ) ) is a deformation quantization for 1 { x i , x i + 1 } = 􏿶 x 1 + √ 4 c ( 0 )+ 1 􏿹 x i + 2 ( i mod 3 ) Problem (Quantization of module categories) ∃ deformation of module category {equivariant vector bundle over M } ↶ Rep U ? Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 8 / 23

  12. Quantization categorical Categorical framework Defjnition (module category) A (right) module category over a tensor category 𝒟 is given by: • linear category 𝒠 • bifunctor 𝒠 × 𝒟 → 𝒠 , ( X , V ) ↦ X ⊗ V • natural isomorphisms X ⊗ 1 → X , Ψ∶ ( X ⊗ V ) ⊗ W → X ⊗ ( V ⊗ W ) satisfying pentagon equation, … Ostrik, De Commer–Y., Neshveyev: (in fjn. dim. or unitary setting) module category 𝒠 over Rep 𝒱 ℏ (𝔳) & X ∈ 𝒠 ↔ 𝒫 ℏ ( U ) -comodule algebra A s.t. 𝒠 = {equivariant A -modules} • deformation of Rep 𝔩 ↶ Rep 𝔳 gives a quantization of U / K • action of Ψ and Drinfeld twist on matrix coeffjcients = coeffjcients of ⋆ ℏ -product Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 9 / 23

  13. Quantization categorical Braided category from quantum groups Universal R-matrix ℛ = 1 + 2 ℏ r + ⋯ ∈ 𝒱 ℏ (𝔳) ⊗ 𝒱 ℏ (𝔳) ℛ Δ ℏ ( x ) ℛ − 1 = fmip Δ ℏ ( x ) (Δ ℏ ⊗ id )( ℛ ) = ℛ 13 ℛ 23 = ∑ i , j x i ⊗ x j ⊗ y i y j for ℛ = ∑ i x i ⊗ y i , ( id ⊗ Δ ℏ )( ℛ ) = ℛ 12 ℛ 13 = ∑ i , j x i x j ⊗ y i ⊗ y j β ( ξ ⊗ η ) = fmip ( π ⊗ π ′ )( ℛ )( ξ ⊗ η ) for ξ ∈ V π , η ∈ V π ′ : • is an intertwiner of (fjnite dimensional) 𝒱 ℏ (𝔳) -modules • satisfjes the Yang-Baxter equation The category of fjnite-dimensional 𝒱 ℏ (𝔳) -modules is: 1 a tensor category, with tensor product module by Δ ℏ 2 with braiding by the action of β Makoto Yamashita (Oslo) Quantum Symmetric Spaces Białowieża, 2019 July 10 / 23

Recommend


More recommend