quantum information with solid state devices
play

Quantum Information with Solid-State Devices VO 141.A55 SS2016 - PowerPoint PPT Presentation

Quantum Information with Solid-State Devices VO 141.A55 SS2016 Dr. Johannes Majer Lecture 7 Next Lecture May 23rd @ Resselpark W IENER P HYSIKALISCHES K OLLOQUIUM TU-W IEN - U NIVERSITT W IEN SS 2016 Einladung zum Vortrag von Ignacio


  1. Quantum Information with Solid-State Devices VO 141.A55 SS2016 Dr. Johannes Majer Lecture 7

  2. Next Lecture May 23rd @ Resselpark

  3. W IENER P HYSIKALISCHES K OLLOQUIUM TU-W IEN - U NIVERSITÄT W IEN SS 2016 Einladung zum Vortrag von Ignacio Cirac Max-Planck-Institut für Quantenoptik München Quantum optics with emitters in waveguides Recent progress in nano-fabrication and atomic physics has allowed to couple atoms (or other emitters) to structured waveguides. In this talk I will report on:(i) a theoretical framework to describe some of those experiments using both a master equation and a path integral approach; (ii) the existence of many-photon bound states in the presence of one emitter; (iii) some techniques to prepare multi-photon states in the waveguide using strong coupling and collective effects. 9. Mai 2016, 17:30 hrs (ab 17 Uhr Kaffee) TU Wien-Freihaus, Wiedner Hauptstrasse 8 – 10 1040 Wien Hörsaal 5, 2. Stock, grüner Bereich http://wpk.univie.ac.at

  4. tunnel junction

  5. Shadow 1. elec t ron beam w rit ing 2. developm ent e - e - e - e - e - e - Evaporation PMMA PMMA PMMA PMMA/MAA Subst rat e 4. ox idat ion 3. first alum inum evaporat ion Al Al O 2 O 2 5. sec ond alum inum evaporat ion 6. lift -off Al Al

  6. RF SET LC tank circuit, impedance transformer

  7. ! 3 x 10 1 0.8 0.6 [( ! 2 ! ! 1 )/2 | 2E c /e] 0.4 Source Drain Voltage (V) 0.2 0 [1/2 | 0] ! 0.2 ! 0.4 [( ! 1 ! ! 2 )/2 | ! 2E c /e] ! 0.6 ! 0.8 ! 1 ! 1 ! 0.5 0 0.5 1 1.5 2 Gate Charge n g =(V g C g )/e

  8. Superconducting SET ! 3 x 10 2 1.5 [( ! /E c +1/2)( " 2 ! " 1 ) | 4 ! /e+2E c /e] 1 [ ! /E c ( " 2 ! " 1 )+1/2 | 4 ! /e] Source Drain Voltage (V) 0.5 C 2 C 2 e 0 C 1 C 1 e ! 0.5 [ ! /E c ( " 1 ! " 2 )+1/2 | ! 4 ! /e] 0 1 1 0 ! 1 [( ! /E c +1/2)( " 1 ! " 2 ) | ! 4 ! /e ! 2E c /e] ! 1.5 ! 2 ! 1 ! 0.5 0 0.5 1 1.5 2 Gate Charge n g =(V g C g )/e

  9. Josephson quasi particle cycle − 3 x 10 2 1.5 [ − κ 1 (3/2+ ∆ /E c )+1 | 2 ∆ /e + 3E c /e] [ κ 2 (3/2+ ∆ /E c ) − 1 | 2 ∆ /e + 3E c /e] 1 [ − κ 1 (1/2+ ∆ /E c )+1 | 2 ∆ /e + E c /e] 0.5 [ κ 2 (1/2+ ∆ /E c ) − 1| 2 ∆ /e + E c /e] 0 C 2 C 2 C 2 2e [ κ 2 (1/2+ ∆ /E c ) − 1 | − 2 ∆ /e − E c /e] [ − κ 1 (1/2+ ∆ /E c )+1 | − 2 ∆ /e − E c /e] − 0.5 C 1 C 1 C 1 e e − 1 [ κ 2 (3/2+ ∆ /E c ) − 1 | − 2 ∆ /e − 3E c /e] [ − κ 1 (3/2+ ∆ /E c )+1 | − 2 ∆ /e − 3E c /e] 0 2 2 1 1 0 − 1.5 − 2 − 1 − 0.5 0 0.5 1 1.5 2 Gate Charge n g =(V g C g )/e

  10. Superconducting RF-SET

Recommend


More recommend