Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 1 / 31
Outline: QG signatures in the Unruh effect The Unruh effect - Overview - The detector approach Dimensional reduction - Spectral dimension - Unruh dimension Quantum gravity corrections - Ostrogradski models - Spectral representation Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 2 / 31
The Unruh effect: Overview Accelerating observer sees thermal bath of particles Trajectory inertial observer ( t, x, y, z ) Trajectory uniformly accelerating (Rindler) observer ( τ, ξ, y, z ) Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 3 / 31
The Unruh effect: Overview Accelerating observer sees thermal bath of particles Trajectory inertial observer ( t, x, y, z ) Trajectory uniformly accelerating (Rindler) observer ( τ, ξ, y, z ) Relation coordinates: t = e aξ sinh ( aτ ) , x = e aξ cosh ( aτ ) , y = y, z = z. a a Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 3 / 31
The Unruh effect: Overview Accelerating observer sees thermal bath of particles Trajectory inertial observer ( t, x, y, z ) Trajectory uniformly accelerating (Rindler) observer ( τ, ξ, y, z ) Relation coordinates: t = e aξ sinh ( aτ ) , x = e aξ cosh ( aτ ) , y = y, z = z. a a Klein-Gordon for m = 0 : − ∂ 2 t + ∂ 2 x + ∂ 2 y + ∂ 2 � � φ ( t, x, y, z ) = 0 z � � e − 2 aξ ( − ∂ 2 τ + ∂ 2 ξ ) + ∂ 2 y + ∂ 2 φ ( τ, ξ, y, z ) = 0 z Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 3 / 31
The Unruh effect: Overview Solutions: � π Ω � 1 / 2 e − i Ω τ u R = 2 π 2 √ a sinh × a � | � p ⊥ | � e aξ e i� p ⊥ · � x ⊥ K i Ω /a a 1 e − i ( ωt − k x x − � u M k ⊥ · � x ⊥ ) = � 2(2 π ) 3 ω Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 4 / 31
The Unruh effect: Overview Solutions: � π Ω � 1 / 2 e − i Ω τ u R = 2 π 2 √ a sinh × a � | � p ⊥ | � e aξ e i� p ⊥ · � x ⊥ K i Ω /a a 1 e − i ( ωt − k x x − � u M k ⊥ · � x ⊥ ) = � 2(2 π ) 3 ω define annihilation/creation operators a ω , ˆ ˆ b Ω such that ˆ ˆ a ω | 0 M � = 0 , b Ω | 0 R � = 0 Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 4 / 31
The Unruh effect: Overview Field expansion: d 3 k � 1 � ω ) † � ˆ a ω u M a † ω ( u M φ = √ ˆ ω + ˆ (2 π ) 3 2 ω d 3 p � 1 � Ω ) † � ˆ Ω + ˆ b † b Ω u R Ω ( u R = √ (2 π ) 3 2Ω Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 5 / 31
The Unruh effect: Overview Field expansion: d 3 k � 1 � ω ) † � ˆ a ω u M a † ω ( u M φ = √ ˆ ω + ˆ (2 π ) 3 2 ω d 3 p � 1 � Ω ) † � ˆ Ω + ˆ b † b Ω u R Ω ( u R = √ (2 π ) 3 2Ω a † and ˆ b, ˆ b † ? Relation between ˆ a, ˆ Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 5 / 31
The Unruh effect: Overview Field expansion: d 3 k � 1 � ω ) † � ˆ a ω u M a † ω ( u M φ = √ ˆ ω + ˆ (2 π ) 3 2 ω d 3 p � 1 � Ω ) † � ˆ Ω + ˆ b † b Ω u R Ω ( u R = √ (2 π ) 3 2Ω a † and ˆ b, ˆ b † ? Relation between ˆ a, ˆ ⇒ Bogolyubov transformation: � � � � ˆ d� a † b Ω = dω k ⊥ α Ω ω ˆ a ω − β Ω ω ˆ ω Find coefficients α, β Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 5 / 31
The Unruh effect: Overview Interested in number of particles observed by accelerating observer � 0 M | ˆ N | 0 M � n Ω = V � 0 M | ˆ b † Ω ˆ b Ω ′ | 0 M � = V � d 3 kβ Ω ω β ∗ = Ω ′ ω where � ω + k x � − i Ω / 2 a 1 β Ω ω = − � ω − k x 2 πaω ( e 2 π Ω /a − 1) Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 6 / 31
The Unruh effect: Overview Interested in number of particles observed by accelerating observer � 0 M | ˆ N | 0 M � n Ω = V � 0 M | ˆ b † Ω ˆ b Ω ′ | 0 M � = V � d 3 kβ Ω ω β ∗ = Ω ′ ω where � ω + k x � − i Ω / 2 a 1 β Ω ω = − � ω − k x 2 πaω ( e 2 π Ω /a − 1) then 1 δ (Ω − Ω ′ ) δ ( � k ⊥ − � k ′ n Ω = ⊥ ) 2 π Ω e − 1 a Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 6 / 31
The Unruh effect: Overview Interested in number of particles observed by accelerating observer � 0 M | ˆ N | 0 M � n Ω = V � 0 M | ˆ b † Ω ˆ b Ω ′ | 0 M � = V � d 3 kβ Ω ω β ∗ = Ω ′ ω where � ω + k x � − i Ω / 2 a 1 β Ω ω = − � ω − k x 2 πaω ( e 2 π Ω /a − 1) then 1 δ (Ω − Ω ′ ) δ ( � k ⊥ − � k ′ n Ω = ⊥ ) 2 π Ω e − 1 a Thermal bath of particles with temperature T = a/ 2 π ⇒ Geometric effect Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 6 / 31
The Unruh effect: The detector approach (I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010)) Two internal energy states E 2 > E 1 Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31
The Unruh effect: The detector approach (I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010)) Two internal energy states E 2 > E 1 Interaction scalar field and detector: L I = gm ( τ ) φ ( x ) Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31
The Unruh effect: The detector approach (I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010)) Two internal energy states E 2 > E 1 Interaction scalar field and detector: L I = gm ( τ ) φ ( x ) Spontaneous emission inertial observer (intrinsic to detector) | E 2 � | 0 M � → | E 1 � | � k � Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31
The Unruh effect: The detector approach (I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010)) Two internal energy states E 2 > E 1 Interaction scalar field and detector: L I = gm ( τ ) φ ( x ) Spontaneous emission inertial observer (intrinsic to detector) | E 2 � | 0 M � → | E 1 � | � k � Amplitude � dτe i ( E 1 − E 2 ) τ � � A ( � k ) = ig � E 1 | m (0) | E 2 � k | φ ( x ( τ )) | 0 M � Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31
The Unruh effect: The detector approach (I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010)) Two internal energy states E 2 > E 1 Interaction scalar field and detector: L I = gm ( τ ) φ ( x ) Spontaneous emission inertial observer (intrinsic to detector) | E 2 � | 0 M � → | E 1 � | � k � Amplitude � dτe i ( E 1 − E 2 ) τ � � A ( � k ) = ig � E 1 | m (0) | E 2 � k | φ ( x ( τ )) | 0 M � Transition probability ( ∆ E ≡ E 2 − E 1 , ∆ τ ≡ τ 1 − τ 2 ) � d 3 k |A| 2 = g 2 | � E 1 | m | E 2 � | 2 F (∆ E ) P i → f = � dτ 1 dτ 2 e i ∆ E ∆ τ G (∆ τ − iǫ ) where F (∆ E ) = Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31
The Unruh effect: The detector approach For massive scalar field in Minkowski space: 1 1 G ( p 2 ) = ˜ p 2 − m 2 = ( p 0 + � p 2 + m 2 )( p 0 − � p 2 + m 2 ) � � Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 8 / 31
The Unruh effect: The detector approach For massive scalar field in Minkowski space: 1 1 G ( p 2 ) = ˜ p 2 − m 2 = ( p 0 + � p 2 + m 2 )( p 0 − � p 2 + m 2 ) � � � p 2 + m 2 Positive frequency Wightman function encircles pole at � d 3 � dp 0 � p � G ( p 2 ) e − i ( p 0 t − � ˜ p · � x ) , G + ( � x, t ) = − i (2 π ) 3 2 π γ + Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 8 / 31
The Unruh effect: The detector approach For massive scalar field in Minkowski space: 1 1 G ( p 2 ) = ˜ p 2 − m 2 = ( p 0 + � p 2 + m 2 )( p 0 − � p 2 + m 2 ) � � � p 2 + m 2 Positive frequency Wightman function encircles pole at � d 3 � dp 0 � p � G ( p 2 ) e − i ( p 0 t − � ˜ p · � x ) , G + ( � x, t ) = − i (2 π ) 3 2 π γ + in real space we find ( t − t ′ − iǫ ) 2 ) − ( � � x ′ ) 2 − im K 1 ( im x − � G + ( x, x ′ ) = ( t − t ′ − iǫ ) 2 ) − ( � 4 π 2 � x ′ ) 2 x − � − 1 1 G + ( x, x ′ ) m → 0 , = ( t − t ′ − iǫ ) 2 − ( � 4 π 2 x − � x ′ ) 2 Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 8 / 31
The Unruh effect: The detector approach Total emission (evaluated on accelerated trajectory): | E 2 � | 0 M � → | E 1 � | � k � , P i → f Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 9 / 31
The Unruh effect: The detector approach Total emission (evaluated on accelerated trajectory): | E 2 � | 0 M � → | E 1 � | � k � , P i → f Induced transition probability P i → f ( induced ) = P i → f − P i → f ( spontaneous ) Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 9 / 31
Recommend
More recommend