quantum classical modelling of au dye absorption
play

Quantum/Classical Modelling of Au/Dye Absorption LUMO Au E NP - PowerPoint PPT Presentation

Quantum/Classical Modelling of Au/Dye Absorption LUMO Au E NP HOMO Jelaine Cunanan LSU CHEM CCT REU S16 Mentor: Dr. Kenneth Lopata/Holden Smith Importance 1. Bio / Chemical Sensors 2. Catalysis (Photochemistry) Chemical Rxns at


  1. Quantum/Classical Modelling of Au/Dye Absorption LUMO ∆ Au E NP HOMO Jelaine Cunanan LSU CHEM CCT REU S’16 Mentor: Dr. Kenneth Lopata/Holden Smith

  2. Importance 1. Bio / Chemical Sensors 2. Catalysis (Photochemistry) ○ Chemical Rxns at Surface 3. Light Harvestry

  3. Optical Absorption ∆E = hv LUMO Light In Light Out ∆E Energy where light is absorbed HOMO

  4. Metal + Molecule Absorption l e D y e m o l e c u 100nm NP Light energy Computer Simulations of Light Absorption in Au nanoparticle coated with dye molecules

  5. Au Requires QM Challenges NP 10 6 atoms 1. Dye molecules require D y e m Quantum Mechanics o l e c (QM) u l e 2. Au NP is too large for QM Too large for QM!

  6. Au Overall Goals NP Quantum Mechanics 10 6 atoms 1. Develop tools for Quantum/Classical Simulations 2. Model Coupled excitements of Au Classical Electrodynamics nanoparticles & dyes (electric & magnetic fields)

  7. My Objectives LUMO 1. Develop code for 2-level QM molecule 2. Parameterize model using Time-Dependent Density ∆E Functional Theory (TDDFT) eg: HOMO-LUMO gap 3. Integrate into electrodynamic HOMO code using finite-difference time domain (FDTD)

  8. Results (FDTD) Gridpoint Grid spacing Gold Nanoparticle

  9. Results (FDTD) Malachite Green Dye Molecule

  10. Results (FDTD) Distance ~2.5nm Gold Nanoparticle/Dye Molecule Coupled Simulations

  11. Results (FDTD) Gold Nanoparticle/Dye Molecule Coupled Simulations

  12. Results (FDTD) Gold Nanoparticle/Dye Molecule Coupled Simulations

  13. Acknowledgments ➔ Dr. Kenneth Lopata ➔ Holden Smith ➔ Adam Bruner ➔ NSF REU ➔ CCT

Recommend


More recommend