quantitative thermo acoustics and related problems
play

Quantitative thermo-acoustics and related problems T ING Z HOU MIT - PowerPoint PPT Presentation

Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Quantitative thermo-acoustics and related problems T ING Z HOU MIT joint work with G. Bal, K. Ren and G. Uhlmann


  1. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Quantitative thermo-acoustics and related problems T ING Z HOU MIT joint work with G. Bal, K. Ren and G. Uhlmann Conference on Inverse Problems Dedicated to Gunther Uhlmann’s 60th Birthday UC Irvine June 19, 2012 T ING Z HOU MIT UCI

  2. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Outline Introduction to Multi-Waves Inverse Problems 1 Quantitative Thermo-Acoustic Tomography (QTAT) 2 Discussions on the System Model 3 T ING Z HOU MIT UCI

  3. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Outline Introduction to Multi-Waves Inverse Problems 1 Quantitative Thermo-Acoustic Tomography (QTAT) 2 Discussions on the System Model 3 T ING Z HOU MIT UCI

  4. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Stand-alone medical imaging modalities High contrast modalities: = ⇒ low resolution Optical Tomography (OT); (Poor stability of diffusion type Electrical Impedance Tomography (EIT); inverse boundary Elastographic Imaging (EI). problems). High resolution medical imaging modalities: Computerized Tomography (CT); = ⇒ sometimes low Magnetic Resonance Imaging (MRI); contrast. Ultrasound Imaging (UI). T ING Z HOU MIT UCI

  5. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Multi-waves medical imaging modalities Physical mechanism that couples two modalities : Optics/EM waves + Ultrasound: Photo-Acoustic Tomography (PAT), Thermo-Acoustic Tomography (TAT) ; Ultrasound Modulated Optical Tomography (UMOT); → To improve resolution while keeping the high contrast capabilities of electromagnetic waves Electrical currents + Ultrasound: UMEIT; Electrical currents + MRI: MREIT; Elasticity + Ultrasound: TE. ...etc. Data fusing of independent imaging modalities. T ING Z HOU MIT UCI

  6. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Photo-Acoustic effect Photoacoustic Effect : The sound of light (Lightening and Thunder!) Graham Bell : When rapid pulses of light are incident on a sample of matter they can be ab- sorbed and the resulting energy will then be radi- ated as heat. This heat causes detectable sound waves due to pressure variation in the surround- Picture from Economist ing medium. (The sound of light) T ING Z HOU MIT UCI

  7. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Photo/Thermo-Acoustic Tomography (PAT/TAT) Wikipedia T ING Z HOU MIT UCI

  8. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Experimental results in PAT Courtesy UCL (Paul Beard’s Lab). T ING Z HOU MIT UCI

  9. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Experimental results in PAT From Lihong Wang’s lab (Wash. Univ.) T ING Z HOU MIT UCI

  10. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Mathematical inverse problems First step: Inverse source problems for acoustic waves (high resolution): to reconstruct the radiation H ( x ) from p ( t , x ) | ∂ Ω . Here H ( x ) is supported on a bounded domain Ω . on R n × [ 0 , T ] ( ∂ 2 t − c ( x ) 2 ∆) p = 0 on R n p ( 0 , x ) = H ( x ) on R n . ∂ t p ( 0 , x ) = 0 Second step: Quantitative PAT/TAT (QPAT/QTAT) The outcome of the first step is the availability of special internal functionals H ( x ) of the parameters (optical or electrical) of interest. The inverse problem of this step aims to address: Which parameters can be uniquely determined; With which stability (resolution) Under which illumination (probing) mechanism. T ING Z HOU MIT UCI

  11. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Results on the first step Constant Speed K RUGER ; A GRANOVSKY , A MBARTSOUMIAN , F INCH , G EORGIEVA -H RISTOVA , J IN , H ALTMEIER , K UCHMENT , N GUYEN , P ATCH , Q UINTO , R AKESH , W ANG , X U . . . Variable Speed A NASTASIO ET . AL ., B URGHOLZER , C OX ET . AL ., G EORGIEVA -H RISTOVA , G RUN , H ALTMEIR , H OFER , K UCHMENT , N GUYEN , P ALTAUFF , W ANG , X U , S TEFANOV -U HLMANN (A modified time reversal) . . . Discontinuous Speed (Brain Imaging) W ANG , S TEFANOV -U HLMANN Partial Data F INCH , P ATCH AND R AKESH , S TEFANOV -U HLMANN . T ING Z HOU MIT UCI

  12. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Motivation of the second step Photo-Acoustic Imaging: Qualitative vs. Quantitative Left: True absorp- tion coefficient σ ( x ) ; Right: Radiation H ( x ) = Γ( x ) σ ( x ) u ( x ) . T ING Z HOU MIT UCI

  13. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Results on the second step of QPAT QPAT modeling (diffusive regime) −∇ · γ ( x ) ∇ u + σ ( x ) u = 0 , in Ω u | ∂ Ω = f . f is the boundary illumination ; Internal measurements (absorption): H ( x ) = Γ( x ) σ ( x ) u ( x ) for x ∈ Ω . Inverse problem : to reconstruct γ ( x ) , σ ( x ) and Γ( x ) from H ( x ) . Results : Two measurements H 1 ( x ) and H 2 ( x ) uniquely and stably determine two out of three parameters (Bal-Uhlmann). Results with partial boundary illuminations (Chen-Yang) T ING Z HOU MIT UCI

  14. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Outline Introduction to Multi-Waves Inverse Problems 1 Quantitative Thermo-Acoustic Tomography (QTAT) 2 Discussions on the System Model 3 T ING Z HOU MIT UCI

  15. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model QTAT–Modeling (system) Low frequency radiation (deeper penetration) in QTAT is modeled by Maxwell’s equations: −∇ × ∇ × E + k 2 E + ik σ ( x ) E = 0 , in Ω ν × E | ∂ Ω = f Internal measurements : the map of absorbed electromagnetic radiation is H ( x ) = σ ( x ) | E | 2 ( x ) Inverse problem : to reconstruct σ ( x ) from H ( x ) . T ING Z HOU MIT UCI

  16. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Results for ME systems (small σ ) Theorem (Bal-Ren-Uhlmann-Z) Let 0 < σ 1 ( x ) , σ 2 ( x ) ≤ σ M for a.e. x ∈ Ω . Then for σ M < α sufficiently small, we have that (i). Uniqueness : if H 1 = H 2 a.e., in Ω , then σ 1 ( x ) = σ 2 ( x ) a.e. in Ω where H 1 = H 2 > 0. (ii). Stability : moreover, we have √ √ � w 1 ( √ σ 1 − √ σ 2 ) � H ≤ C � w 2 ( H 1 − H 2 ) � H , for some universal constant C and for positive weights given by w 2 ( x ) = max ( σ 1 / 2 , σ 1 / 2 ) + max ( σ − 1 / 2 , σ − 1 / 2 1 ( x ) = | u 1 u 2 | ) w 2 1 2 1 2 √ σ 1 σ 2 ( x ) , α − sup x ∈ Ω √ σ 1 σ 2 . Denote operator P := 1 ik ( ∇ × ∇ × − k 2 ) , then α > 0 is such that ( Pu , u ) L 2 ≥ α � u � L 2 . The result extends to operators with the same property. T ING Z HOU MIT UCI

  17. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model Proof: Denote � E j = E j / | E j | , then √ √ p ( E 1 − E 2 ) = √ σ 1 σ 2 ( | E 2 | � H 2 )( √ σ 1 � E 1 + √ σ 2 � E 1 − | E 1 | � E 2 ) + ( H 1 − E 2 ) , � � � | E 2 | � E 1 − | E 1 | � � = | E 2 − E 1 | . E 2 Therefore, � � √ √ √ σ 1 σ 2 ) � E 1 − E 2 � 2 H 2 )( √ σ 1 � E 1 − √ σ 2 � ( α − sup L 2 ≤ ( H 1 − E 2 ) , E 1 − E 2 L 2 . x ∈ Ω √ σ 1 σ 2 ) �| E 1 | − | E 2 |� 2 LHS ≥ ( α − sup L 2 x ∈ Ω � √ σ 1 σ 2 ) � w 1 ( √ σ 2 − √ σ 1 ) � 2 ≥ ( α − sup L 2 x ∈ Ω � � √ H 1 − √ H 2 � � � ( H 1 / 4 + H 1 / 4 � � 1 2 + � √ σ 1 √ σ 2 ) � . � H 1 / 4 + H 1 / 4 � 1 2 L 2 T ING Z HOU MIT UCI

  18. Introduction to Multi-Waves Inverse Problems Quantitative Thermo-Acoustic Tomography (QTAT) Discussions on the System Model QTAT–Modeling (scalar) We also consider the scalar model of Helmholtz equations (∆ + k 2 + ik σ ( x )) u = 0 , in Ω u | ∂ Ω = f Internal measurements : H ( x ) = σ ( x ) | u | 2 ( x ) Inverse problem : to reconstruct σ ( x ) from H ( x ) . T ING Z HOU MIT UCI

Recommend


More recommend