quantitative equidistribution for the solutions of
play

Quantitative Equidistribution for the Solutions of Systems of Sparse - PowerPoint PPT Presentation

Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations Carlos DAndrea SIAM Conference on Applied Algebraic Geometry Raleigh NC October 2011 Carlos DAndrea Quantitative Equidistribution for the


  1. Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations Carlos D’Andrea SIAM Conference on Applied Algebraic Geometry – Raleigh NC October 2011 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  2. Roots of polynomials vs “controlled” coefficients Let f be a polynomial of degree d ≫ 0 with coefficients in {− 1 , 0 , 1 } . I will plot all complex solutions of f = 0 . . . Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  3. For instance, let d = 10 and f = − x 10 + x 9 + x 8 + x 6 + x 5 − x 4 + x 3 − x 2 + x − 1 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  4. Now set d = 30 and = x 30 − x 29 − x 28 + x 26 + x 25 − x 24 − x 23 − x 22 f + x 21 − x 20 + x 19 + x 18 + x 16 + x 15 − x 14 + x 13 + x 12 + x 10 + x 9 − x 6 + x 5 − 1 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  5. d = 100 and f = − x 100 − x 98 + x 96 + x 94 − x 93 + x 92 − x 91 − x 90 + · · Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  6. A more ambitious experiment Let us say now that f has degree d ≫ 0 with integer coefficients between − d and d . What happens now? Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  7. d = 10 and f = − 6 + 8 x − x 2 + 10 x 3 − 3 x 4 + 8 x 5 + 4 x 6 − 9 x 7 + 9 x 8 − 6 x 9 + 5 x 10 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  8. d = 50 and f = − 24 + 12 x − 44 x 48 − 48 x 49 − 42 x 28 + 15 x 29 + 34 x 26 + 22 x 27 − 24 x 24 + 29 x 25 + 14 x 2 − 40 x 3 − 48 x 4 + 35 x 5 + 24 x 6 + 27 x 7 − 3 x 8 − 15 x 9 − 21 x 10 + 12 x 14 − 15 x 50 − 14 x 33 + 38 x 34 + 10 x 35 − 23 x 36 + 48 x 37 + 30 x 38 − 23 x 39 − 31 x 40 + 2 x 41 + 24 x 42 + 9 x 43 − 15 x 44 − 29 x 45 + 45 x 46 + 40 x 47 + 40 x 31 − 40 x 32 + 38 x 11 + 8 x 12 − 16 x 13 − 39 x 15 + 2 x 16 − 38 x 17 − x 18 + 16 x 19 − 44 x 20 − 20 x 21 + 22 x 22 + 28 x 23 + 32 x 30 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  9. d = 100 and f = 30 − 45 x − 91 x 74 − 33 x 75 + 4 x 73 − 59 x 79 + 35 x 92 − 57 x 48 + 49 x 49 + 2 x 93 − 87 x 28 − 16 x 29 − 78 x 26 − 31 x 27 + 19 x 50 − 73 x 24 − 63 x 25 + 98 x 2 + 29 x 3 − 97 x 4 + 47 x 5 + 46 x 6 − 88 x 7 − 74 x 8 − 60 x 9 − 62 x 10 − 27 x 81 − 82 x 80 − 92 x 78 − 50 x 77 − 41 x 76 − 21 x 95 + 8 x 66 − 7 x 67 + 75 x 64 − 19 x 94 − 48 x 63 + 92 x 65 − 18 x 60 + 53 x 61 + 84 x 59 − 15 x 57 − 13 x 58 − 64 x 91 + 84 x 90 − 54 x 89 + 67 x 55 − 81 x 56 − 27 x 54 − 61 x 88 + 43 x 87 + 49 x 86 + 51 x 84 − 12 x 85 − 64 x 83 + 52 x 82 + 43 x 70 − 91 x 71 − 97 x 72 + 76 x 68 + 14 x 69 + 73 x 99 − 56 x 97 + 41 x 98 + 73 x 96 + 44 x 100 + 2 x 51 − 79 x 52 + 87 x 53 − 43 x 14 + 39 x 62 + 50 x 33 + 53 x 34 + 64 x 35 + 57 x 36 − 57 x 37 − 31 x 38 + 85 x 39 + 30 x 40 − 49 x 41 + 6 x 42 − 82 x 43 + 34 x 44 + 59 x 45 + 7 x 46 + 91 x 47 + 59 x 31 + 58 x 32 − 4 x 11 − 71 x 12 − 68 x 13 + 74 x 15 + 60 x 16 − 3 x 17 + 23 x 18 − 55 x 19 + 80 x 20 − 32 x 21 + 17 x 22 − 14 x 23 − 69 x 30 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  10. Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  11. What is going on??? Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  12. The Erdös-Turán theorem Let f ( x ) = a d x d + · · · + a 0 = a d ( x − ρ 1 e i θ 1 ) · · · ( x − ρ d e i θ d ) Definition The angle discrepancy of f is � # { k : α ≤ θ k < β } − β − α � � � ∆ θ ( f ) := sup � � d 2 π � � 0 ≤ α<β< 2 π The ε -radius discrepancy of f is ∆ r ( f ; ε ) := 1 1 � � k : 1 − ε < ρ k < d # 1 − ε Also set || f || := sup | z | = 1 | f ( z ) | Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  13. Theorem [Erdös-Turán 1948], [Hughes-Nikeghbali 2008] � � � � � || f || || f || 1 2 √ √ ∆ θ ( f ) ≤ c d log 1 − ∆ r ( f ; ε ) ≤ ε d log , | a 0 a d | | a 0 a d | √ Here 2 ≤ c ≤ 2 , 5619 [Amoroso-Mignotte 1996] Corollary: the equidistribution || f d || � √ � Let f d ( x ) of degree d such that log = o ( d ) , then | a d , 0 a d , d | 1 = β − α � � lim d →∞ d # k : α ≤ θ dk < β 2 π 1 1 � � lim d →∞ d # k : 1 − ε < ρ dk < = 1 1 − ε Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  14. Some consequences � � � || f || √ 1 The number of real roots of f is ≤ 51 d log | a 0 a d | [Erhardt-Schur-Szego] 2 If g ( z ) = 1 + b 1 z + b 2 z 2 + . . . converges on the unit disk, then the zeros of its d -partial sums distribute uniformely on the unit circle as d → ∞ [Jentzsch-Szego] Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  15. Equidistribution in several variables (joint work with Martin Sombra & André Galligo) * For a finite sequence of points P = { p 1 , . . . , p m } ⊂ ( C × ) n , we can define ∆ θ ( P ) and ∆ r ( P , ε ) * Every such set P is the solution set of a complete intersection f = 0 with f = ( f 1 , . . . , f n ) Laurent Polynomials in C [ x ± 1 1 , . . . , x ± 1 n ] Problem * Estimate ∆ θ ( P ) and ∆ r ( P , ε ) in terms of f || f || √ * Which is the analogue of | a 0 a d | in several variables? * Equidistribution theorems Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  16. Some Evidence Singularities of families of algebraic plane curves with “controlled” coefficients tend to the equidistribution [Diaconis-Galligo] Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  17. More Evidence: equidistribution of algebraic points A sequence of algebraic points { p k } k ∈ N ⊂ ( C ∗ ) n such that deg ( p k ) = k and lim k →∞ h ( p k ) = 0 “equidistributes” in S 1 × S 1 × . . . × S 1 [Bilu 1997] Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  18. The multivariate setting For f 1 , . . . , f n ∈ C [ x ± 1 1 , . . . , x ± 1 n ] consider V ( f 1 , . . . , f n ) = { ξ ∈ ( C × ) n : f 1 ( ξ ) = · · · = f n ( ξ ) = 0 } ⊂ ( C × ) n and V 0 the subset of isolated points Set Q i := N ( f i ) ⊂ R n the Newton polytope, then # V 0 ≤ MV n ( Q 1 , . . . , Q n ) =: D [ BKK ] From now on, we will assume # V 0 = D , in particular V ( f ) = V 0 . Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  19. A toric variety in the background # V 0 = D is equivalent to the fact that the system f 1 = 0 , . . . , f n = 0 does not have solutions in the toric variety associated to the polytope Q 1 + Q 2 + . . . + Q n [Bernstein 1975], [Huber-Sturmfels 1995] Can be tested with resultants “at infinity”! Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  20. A multivariate Erdös-Turán measure f ↔ “multidirectional” Chow forms a 0 , a d ↔ facet resultants E f , a ( z ) = Res { 0 , a } , A 1 ,..., A n ( z − x a , f 1 , . . . , f n ) � � � E f , a ( z ) � 1 η ( f ) = sup a ∈ Z n \{ 0 } D � a � log |� v , a �| n ( f v 1 ,..., f v � v | Res A v n ) | 2 1 ,..., A v Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  21. Theorem (D-Galligo-Sombra) η ( f ) < + ∞ For n = 1 , η ( f ) coincides with the Erdös-Turán measure � f � √ | a 0 a D | If f 1 , . . . , f n ∈ C [ x ± 1 1 , . . . , x ± 1 n ] and f = 0 has D > 0 zeroes, then � 1 � 1 3 log + ∆ θ ( f ) ≤ c ( n ) η ( f ) , 1 − ∆ r ( f ; ε ) ≤ c ( n ) η ( f ) η ( f ) n + 1 with c ( n ) ≤ 2 3 n n 2 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  22. Corollary (D-Galligo-Sombra) The number of real roots of a sparse system f = 0 with f 1 , . . . , f n ∈ R [ x ± 1 1 , . . . , x ± 1 n ] is bounded above by � 1 � 1 D c ′ ( n ) η ( f ) 3 log + η ( f ) n + 1 with c ′ ( n ) ≤ 2 4 n n 2 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

  23. Estimates on η ( f ) Suppose Q i ⊂ d i ∆ + a i , with ∆ being the fundamental simplex of R n . Then � log � f j � sup � n 1 η ( f ) 2 nd 1 . . . d n + < j = 1 D d j v � v � log + | Res A v 1 n ( f v 1 , . . . , f v n ) − 1 | � � 1 ,..., A v 2 In particular, for f 1 , . . . , f n ∈ Z [ x 1 , . . . , x n ] , of degrees d 1 , . . . , d n , then n log � f j � sup � η ( f ) ≤ 2 n d j j = 1 Carlos D’Andrea Quantitative Equidistribution for the Solutions of Systems of Sparse Polynomial Equations

Recommend


More recommend