quantifier retrieval la przepi rkowski
play

Quantifier Retrieval la Przepirkowski Jonathan Khoo - PowerPoint PPT Presentation

Introduction Background Przepirkowski Summary Quantifier Retrieval la Przepirkowski Jonathan Khoo jkhoo@sfs.uni-tuebingen.de Introduction to HPSG Winter Semester 2005/2006 Jonathan Khoo Quantifier Retrieval la Przepirkowski


  1. Introduction Background Przepiórkowski Summary Quantifier Retrieval à la Przepiórkowski Jonathan Khoo jkhoo@sfs.uni-tuebingen.de Introduction to HPSG Winter Semester 2005/2006 Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  2. Introduction Background Przepiórkowski Summary Agenda Introduction 1 Background 2 Theory review Pollard and Yoo Przepiórkowski’s Account 3 Foundations Theory in Action: Examples Problems Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  3. Introduction Background Przepiórkowski Summary Benefits Retrieval only at certain sites → no spurious ambiguities Simpler analysis: completely lexical No complex constraints Semantics completely in CONTENT Works with traceless extractions Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  4. Introduction Background Przepiórkowski Summary HPSG PY Outline Introduction 1 Background 2 Theory review Pollard and Yoo Przepiórkowski’s Account 3 Foundations Theory in Action: Examples Problems Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  5. Introduction Background Przepiórkowski Summary HPSG PY RIP SUBCAT ✷ ✸ word ✷ ✸ ✻ synsem ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✷ ✸ ✻ local ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ SYNSEM ✼ ✧ ★ ✻ ✻ ✼ ✼ ✻ category ✼ LOCAL ✻ ✻ ✼ ✼ ✻ ✼ CATEGORY ✻ ✼ ✹ ✺ ✻ ✼ SUBCAT < 1 , 2 , 3 > ✹ ✺ ✹ ✺ Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  6. Introduction Background Przepiórkowski Summary HPSG PY VALENCE and ARG - ST ✷ ✸ word ✻ ✷ ✸ ✼ synsem ✻ ✼ ✻ ✼ ✷ ✸ ✻ local ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✻ ✼ ✼ ✻ ✼ ✻ ✷ category ✸ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✷ ✸ ✻ ✼ ✻ valence ✼ ✻ ✻ ✼ ✼ SYNSEM ✻ ✻ ✼ ✼ ✻ ✼ ✻ ✼ LOCAL ✻ ✻ ✼ ✼ ✻ ✼ ✻ ✼ ✻ list 1 ✼ ✻ SUBJ ✼ CATEGORY ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ VALENCE ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ ✼ ✻ list 2 ✼ ✻ ✻ SPR ✼ ✼ ✻ ✼ ✻ ✻ ✼ ✼ ✻ ✼ ✻ ✼ ✹ ✺ ✻ ✼ ✹ ✺ ✻ ✼ ✻ ✼ list 3 COMPS ✹ ✺ ✹ ✺ ✻ ✼ ✻ ✼ ✻ ✼ ✹ ✺ ✡ 1 , 2 , 3 ☛ ARG - ST ARG - ST is a list of SYNSEM s. Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  7. Introduction Background Przepiórkowski Summary HPSG PY Semantics Principle (paraphrased) In a headed phrase... RETRIEVED = subset list of union of daughters’ QSTORE s, and QSTORE is relative complement of that set If semantic head’s CONTENT is psoa then... NUCLEUS is identical to NUCLEUS of semantic head QUANTS is QUANTS of semantic head + RETRIEVED else... RETRIEVED = �� CONTENT is token-identical to CONTENT of semantic head Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  8. Introduction Background Przepiórkowski Summary HPSG PY Outline Introduction 1 Background 2 Theory review Pollard and Yoo Przepiórkowski’s Account 3 Foundations Theory in Action: Examples Problems Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  9. Introduction Background Przepiórkowski Summary HPSG PY Pollard and Yoo’s sign   sign � phonstring �  PHONOLOGY          category   CATEGORY        CONTENT | NUCLEUS qfpsoa              LOCAL � �  SYSNSEM     quantifier *  QSTORE                 � �    quantifier *   POOL        � quantifier ∗ � RETRIEVED POOL = union of QSTORE s of selected arguments ( → VALENCE ) POOL = QSTORE ∪ set of elements of RETRIEVED Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  10. Introduction Background Przepiórkowski Summary HPSG PY Spurious Ambiguities in PY Retrievals at VP 2 , VP 3 , VP 4 , and V 4 yield the same reading Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  11. Introduction Background Przepiórkowski Summary Foundations Examples Problems Outline Introduction 1 Background 2 Theory review Pollard and Yoo Przepiórkowski’s Account 3 Foundations Theory in Action: Examples Problems Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  12. Introduction Background Przepiórkowski Summary Foundations Examples Problems Overview ✷ ✸ word ✷ ✸ content . . . ✻ ✼ (1.2a) (1.2b) ✻ ✼ ♥ ♦ ✹ ✺ quant * ✹ ♥ ♦ ✺ QSTORE NEW - QUANTIFIERS quant * � � ������� � � � � � psoa nom-obj quant (1.3) word → Desc 1 ∨ Desc 2 ✷ ✸ ✷ ✸ psoa ✧ ★ nom-obj ∨ quant ✻ ✼ ✻ ✼ SS | LOC | CONT ∨ 2 QSTORE ✻ ✼ ✻ ✼ (1.4) Desc 1 = ✻ QSTORE 1 ✼ ✹ ✺ ✻ ✼ 3 QUANTS ✻ ✼ ✹ ✺ NEW - QUANTIFIERS 5 where 1 = 5 ⊎ union QSTORE s of selected arguments 4 = set of elements of 3 1 = 2 ⊎ 4 ✷ ✸ SS | LOC | CONT 1 (1.5) Desc 2 = ✜ ✢ ✻ ❤ ✐ ✼ ARG - ST . . . , SS | LOC | CONT 1 , . . . ✹ ✺ Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  13. Introduction Background Przepiórkowski Summary Foundations Examples Problems Selected Arguments Pollard and Yoo POOL is union of quantifiers from QSTORE s of selected arguments: thematic elements from SUBJ or COMPS feature, elements selected via SPR feature, or elements selected via MOD feature NOTE: reliance on VALENCE ! Przepiórkowski QSTORE accumulates quantifiers from QSTORE s of those members of ARG - ST not raised from other arguments Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  14. Introduction Background Przepiórkowski Summary Foundations Examples Problems Outline Introduction 1 Background 2 Theory review Pollard and Yoo Przepiórkowski’s Account 3 Foundations Theory in Action: Examples Problems Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

  15. � � Introduction Background Przepiórkowski Summary Foundations Examples Problems A unicorn appears to be approaching. A unicorn appears to be approaching . exists ( 1 ) may not exist ( 2 ) Something appears to be approaching, and it is a unicorn. 1 Something appears to be approaching, and it appears to 2 be a unicorn. (But then again, it could just be a dog wearing a party hat .) Jonathan Khoo Quantifier Retrieval à la Przepiórkowski

Recommend


More recommend